Advertisement

Glass and Ceramics

, Volume 71, Issue 1–2, pp 60–63 | Cite as

High-Temperature Inorganic Glass Textolites

  • I. F. Davydova
  • N. S. Kavun
  • I. I. Sokolov
  • E. P. Shvetsov
At Enterprises and Institutes
  • 63 Downloads

The properties of glass textolites based on inorganic aluminum phosphate binders and glass fillers with different structures are investigated. The mechanical and dielectric properties of the glass textolites STAF based on silica, glass and basalt fillers as well as lightweight glass textolites filled with microspheres are presented. Glass textolites based on inorganic aluminum phosphate binder can be used to fabricate construction and radiometric articles which operate for prolonged periods of time at high temperatures.

Key words

glass textolites aluminum phosphate binders mechanical characteristics dielectric properties 

References

  1. 1.
    I. F. Davydova and N. S. Kavun, “Glass plastics — multifunctional composite materials,” in: Aviation Materials and Technologies: Anniversary Scientific-Technical Issue (Appendix to the Journal Aviatsionnye Materialy i Tekhnologii) [in Russian], VIAM, Moscow (2012), pp. 252 – 260.Google Scholar
  2. 2.
    I. V. Davydova, E. N. Kablov, and N. S. Kavun, “Heat-resistant incombustible polyimide glass textolites for aerospace engineering,” Vse Materialy, Éntsiklopedich. Sprav., No. 7, 2 – 11 (2009).Google Scholar
  3. 3.
    I. F. Davydova and N. S. Kavun, “Heat-resistant hermetic glass textolites,” Vse Materialy, Éntsiklopedich. Sprav., No. 11, 18 – 20 (2011).Google Scholar
  4. 4.
    I. F. Davydova, N. S. Kavun, and E. P. Shvetsov, “Basalt plastics for use at elevated temperatures,” Vse Materialy, Éntsiklopedich. Sprav., No. 11, 18 – 24 (2012).Google Scholar
  5. 5.
    I. F. Davydova and N. S. Kavun, “Glass plastics in aerospace engineering,” Steklo Keram., No. 4, 36 – 42 (2012); I. F. Davydova and N. S. Kavun, “Glass plastics in aviation and rocket engineering,” Glass Ceram., 69(3 – 4), 134 – 139 (2012).CrossRefGoogle Scholar
  6. 6.
    I. F. Davydova and N. S. Kavun, “Flame resistant glass plastics in nacelles of jet engines,” Vse Materialy, Éntsiklopedich. Sprav., No. 7, 16 – 20 (2011).Google Scholar
  7. 7.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Steklo Keram., No. 4, 7 – 11 (2012); E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Glass Ceram., 69(3 – 4), 109 – 112 (2012).CrossRefGoogle Scholar
  8. 8.
    E. I. Suzdal’tsev, D. V. Kharitonov, and A. V. Dmitriev, “State of research on the synthesis of radioparent materials and prospects for developing new compositions with improved radio-engineering properties,” Konstr. Kompozit. Mater., No. 2, 45 – 52 (2008).Google Scholar
  9. 9.
    Ch. G. Pak and V. M. Batrashov, “Phosphate composite materials,” in: New Materials and Technologies for Producing Them: 5th International Scientific and Applications Conference [in Russian], Ekaterinburg (2011).Google Scholar
  10. 10.
    Ch. G. Pak and V. M. Batrashov, “Possibilities for regulating the structure and properties of phosphate composite materials,” in: All-Russia Scientific and Technical Conference on the Prospects for the Development of Construction Materials Science: Energy and Resource Conservation in Construction [in Russian], Izd. YUUrGU, Chelyabinsk (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. F. Davydova
    • 1
  • N. S. Kavun
    • 1
  • I. I. Sokolov
    • 1
  • E. P. Shvetsov
    • 1
  1. 1.All-Russia Scientific-Research Institute of Aviation Materials (VIAM)MoscowRussia

Personalised recommendations