Advertisement

Glass and Ceramics

, Volume 70, Issue 3–4, pp 117–123 | Cite as

Faculty of the Chemical Technology of Glass and Sitals at 80 years: youth knows — maturity can

  • V. N. Sigaev
At Enterprises and Institutes

The results of research performed in the Faculty of the Chemical Technology of Glass and Sitals at the D. I. Mendeleev Russian Chemical Technology University over the last five years are summarized.

Key words

glass glass ceramic structure properties 

References

  1. 1.
    P. D. Sarkisov, V. N. Sigaev, N. V. Golubev and V. I. Savinkov, “Optical phosphate glass, RF Patent No. 2426701, publ. August 20, 2011,” Byull. Izobr. Polezn. Modeli, No. 23 (2011).Google Scholar
  2. 2.
    V. I. Savinkov, V. N. Sigaev, V. N. Golubev, et al., “Borogermanate glasses with a high terbium oxide content,” J. Non-Cryst. Solids, 356, 1655–1659 (2010).CrossRefGoogle Scholar
  3. 3.
    P. D. Sarkisov, V. N. Sigaev, N. V. Golubev and V. I. Savinkov, “Magneto-optical glass, RF Patent No. 2452698, publ. June 10, 2012,” Byull. Izobr. Polezn. Modeli, No. 16 (2012).Google Scholar
  4. 4.
    G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, et al., “Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions,” J. Non-Cryst. Solids, 357, 67–72 (2011).CrossRefGoogle Scholar
  5. 5.
    G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, et al., “Luminescing glass, RF Patent No. 2415089, publ. March, 27, 2011,” Byull. Izobr. Polezn. Modeli, No. 9 (2011).Google Scholar
  6. 6.
    G. E. Malashkevich, V. N. Sigaev, P. D. Sarkisov, et al., “Glass, RF Patent No. 2386596, publ. April 20, 2010,” Byull. Izobr. Polezn. Modeli, No. 11 (2010).Google Scholar
  7. 7.
    N. V. Golubev, V. I. Savinkov, E. S. Ignat’eva, et al., “Nickel activated gallium-containing glasses luminescing in the near-IR range of the spectrum,” Fiz. Khim. Stekla, 36(6), 25–32 (2010).Google Scholar
  8. 8.
    V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, et al. “Nickel-assisted growth and selective doping of LiGa5O8 nanocrystals in germano-silicate glasses for infrared broadband light-emission,” Nanotechnology, 23, 1–7 (2012).CrossRefGoogle Scholar
  9. 9.
    V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, et al., Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale, 5, 299–306 (2013).CrossRefGoogle Scholar
  10. 10.
    G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, et al., “Spectroscopic properties of Sm-containing yttrium-aluminoborate glasses and analogous huntite-like,” Mater. Chem. Physics, 137(1), 48–54 (2012).CrossRefGoogle Scholar
  11. 11.
    G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, et al., “Restructuring of optical centers and stimulated emission Eu3+ in hantite polycrystals under optical and electronic excitation,” Pis’ma Zh. Éksp. Teor. Fiz., 92(8), 547–552 (2010).Google Scholar
  12. 12.
    E. Kh. Mamadzhanova, N. V. Golubev, V. N. Sigaev, et al., “Crystallization and luminescence properties of (SmxY1 – x)2O3–Al2O3–B2O3 glass,” Steklo Keram., No. 11, 14–19 (2012); E. Kh. Mamadzhanova, N. V. Golubev, V. N. Sigaev, et al., “Crystallization and luminescence properties of (SmxY1 – x)2O3–Al2O3–B2O3 glass,” Glass Ceram., 69(11–12), 370–374 (2012).Google Scholar
  13. 13.
    V. M. Mashinsky, N. M. Karatun, V. A. Bogatyrev, et al., “Microfluorescence analysis of nanostructuring inhomogeneity in optical fibres with embedded gallium oxide nanocrystals,” Microscopy and Microanalysis, a Cambridge University Press Journal, 18(2), 259–265 (2012).Google Scholar
  14. 14.
    V. N. Sigaev, V. S. Ryzhenkov, N. V. Golubev, et al., “Glasses and their crystallization in (1 – x)KNbO3xSiO2 system at low glass-forming oxide content, 0 ≤ x ≤ 0.35,” J. Non-Cryst. Solids, 356, 958–965 (2010).CrossRefGoogle Scholar
  15. 15.
    V. N. Sigaev, V. S. Ryzhenkov, S. V. Lotarev, et al., “Nanoheterogeneous structure of glasses in (1 – x)KNbO3xSiO2 system at low glass-forming oxide content, 0.05 < x < 0.3,” J. Non-Cryst. Solids, 357, 3136–3142 (2011).CrossRefGoogle Scholar
  16. 16.
    P. D. Sarkisov, A. Paleari, V. N. Sigaev, et al., “Structure of glasses in the system K2O–Nb2O5–SiO2 with low silica content,” Teor. Osnovy Khim. Tekh., 47(1), 1–9 (2013).Google Scholar
  17. 17.
    H. Vigouroux, B. Le Garrec, E. Fargin, et al. “Crystallization and SHG surface and bulk responses of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc., 94(7), 2080–2086 (2011).CrossRefGoogle Scholar
  18. 18.
    P. D. Sarkisov, V. N. Sigaev, S. V. Lotarev and V. S. Ryshenkov, Nanostructured Polarized Glass and Method of Obtaining It, RF Patent No. 2009148700, February 7, 2011 [in Russian].Google Scholar
  19. 19.
    V. N. Sigaev, V. I. Savinkov, S. V. Lotarev, et al. “Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage,” Nanotechnology, 24 (2013).Google Scholar
  20. 20.
    S. V. Lotarev, A. S. Lipatyev, N. V. Golubev, et al., “Laser-induced nanostructuring of nickel-doped alkali gallium silicogermanate glasses,” Opt. Lett., 38(4), 492–494 (2013).CrossRefGoogle Scholar
  21. 21.
    S. V. Lotarev, T. O. Gelmanova, Yu. S. Priseko, et al., “Local laser-induced crystallization of lanthanum boron germanate glass near LaBGeO5 composition,” Proc. SPIE, 8306, 830619 (2011).CrossRefGoogle Scholar
  22. 22.
    P. D. Sarkisov, L. A. Orlova, N. V. Popovich, et al., “Sintering and crystallization during the production of strontium-anortite glass ceramic,” Steklo Keram., No. 9, 28–36 (2012); P. D. Sarkisov, L. A. Orlova, N. V. Popovich, et al., “Sintering and crystallization during the production of strontium-anortite glass ceramic,” Glass Ceram., 69, No. 9–10, 306–312 (2012).Google Scholar
  23. 23.
    P. D. Sarkisov, D. V. Grashchenkov, L. A. Orlova, et al., “Current achievements in the development of high-temperature radio transparent materials,” Tekh. Tekhnol. Silikatov, 16, 2–10 (2009).Google Scholar
  24. 24.
    L. A. Orlova, N. E. Uvarova, A. Paleari, and P. D. Sarkisov, “High-temperature resistant glass-ceramics based on Sr-anorthite and tialite phases,” Ceram. Int., 38(8), 6629–6634 (2012).CrossRefGoogle Scholar
  25. 25.
    P. D. Sarkisov, L. A. Orlova, and N. V. Popovich, “Radio transparent glass ceramic material for aviation technology, RF Patent No. 2440936, publ. January 27, 2012,” Byull. Izobr. Polezn. Modeli, No. 2 (2012).Google Scholar
  26. 26.
    P. D. Sarkisov, N. V. Popovich, L. A. Orlova, and Yu. E. Anan’-eva, “Protective coatings for C/SiC ceramic-matrix composites (Review),” Steklo Keram., No. 10, 44–49 (2008); P. D. Sarkisov, N. V. Popovich, L. A. Orlova, and Yu. E. Anan’eva, “Barrier coatings for type C/SiC ceramic-matrix composites (Review),” Glass Ceram., 65(9–10), 366–371 (2008).Google Scholar
  27. 27.
    P. D. Sarkisov, Yu. E. Lebedeva, L. A. Orlova, and N. V. Popovich, “Protective glass ceramic coating for SiC-containing materials and a method for obtaining it, RF Patent No. 2463279, publ. October 10, 2012,” Byull. Izobr. Polezn. Modeli, No. 29 (2012).Google Scholar
  28. 28.
    P. D. Sarkisov, A. Paleari, A. S. Chainikova, L. A. Orlova, et al., “Composites based on aluminum-silicate glass ceramic: synthesis and properties,” Dokl. Akad. Nauk, 446(5), 544–546 (2012).Google Scholar
  29. 29.
    S. Yu. Stefanovich, A. Akada, and V. N. Sigaev, “Method of obtaining fiber-textured glass ceramic, RF Patent No. 2422390, publ. June 27, 2011,” Byull. Izobr. Polezn. Modeli, No. 18 (2011).Google Scholar
  30. 30.
    P. D. Sarkisov, S. V. Lotarev, V. S. Ryzhenkov, et al., “Obtaining ceramic based on potassium niobate from glass,” Dokl. Akad. Nauk, 447(1), 63–65 (2012).Google Scholar
  31. 31.
    E. E. Stroganova and N. V. Buchilin, “Sintered material based on calcium phosphate glasses,” Steklo Keram., No. 8, 8–11 (2008); E. E. Stroganova and N. V. Buchilin, “Sintered glass ceramic material based on calcium phosphate glasses,” Glass Ceram., 65(7–8), 256–259 (2008).Google Scholar
  32. 32.
    P. D. Sarkisov, N. Yu. Mikhailenko, E. E. Stroganova, et al., “Porosity and solubility of bioactive calcium-phosphate glass ceramic materials for bone endoprosthesis replacement,” Steklo Keram., No. 5, 40–45 (2012); P. D. Sarkisov, N. Yu. Mikhailenko, E. E. Stroganova, et al., “Porosity and solubility of bioactive calcium-phosphate glass ceramic materials for bone endoprosthesis replacement,” Glass Ceram., 69(5–6), 173–177 (2012).Google Scholar
  33. 33.
    P. D. Sarkisov, N. Yu. Mikhailenko and E. E. Stroganova, “Bioactivity of materials based on calcium phosphate systems,” Teor. Osnovy Khim. Tekh., 47(1), 23–25 (2013).Google Scholar
  34. 34.
    P. D. Sarkisov, N. Yu. Mikhailenko, A. Paleari, et al., “Structure formation in porous calcium phosphate systems,” Dokl. Akad. Nauk, 443(5), 1–4 (2012).Google Scholar
  35. 35.
    G. N. Atroshchenko, V. I. Savinkov, A. Paleari, et al., “Glassy microspheres for nuclear medicine with elevated yttrium oxide content,” Steklo Keram., No. 2, 3–7 (2012); G. N. Atroshchenko, V. I. Savinkov, A. Paleari, et al., “Glassy microspheres with elevated yttrium oxide content for nuclear medicine,” Glass Ceram., 69(1–2), 39–43 (2012).Google Scholar
  36. 36.
    V. N. Sigaev, G. N. Atroschenko, V. I. Savinkov, et al., “Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy,” Mater. Chem. Physics, 133(1), 24–28 (2012).CrossRefGoogle Scholar
  37. 37.
    V. N. Sigaev, N. V. Golubev, S. V. Lotarev, et al., “Microspheres made from yttrium-aluminum-silicate glass for radiotherapy and method of obtaining them, RF Patent No. 2454377, publ. June 27, 2012,” Byull. Izobr. Polezn. Modeli, No. 18 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.D. I. Mendeleev Russian Chemical Technology UniversityMoscowRussia

Personalised recommendations