Glass and Ceramics

, Volume 68, Issue 11–12, pp 378–381 | Cite as

Possibilities of using composite hydroxyapatite ceramics as carriers of cultured stem cells

  • L. A. Ivanchenko
  • A. R. Parkhomei
  • A. G. Popandopulo
  • A. V. Oberemko

The possibility of using a composite ceramic based on biogenic hydroxyapatite (BHA) as a carrier for cultured stem cells is examined. The results of investigations of the microstructure and biochemical activity of samples of BHA-based glass ceramic with the maximum open porosity, which were prepared for use as substrates for in vitro cloning fibroblast cells, are presented. The results of a visual assessment performed with a fluorescence microscope of cell adhesion and cell proliferation activity on bioresorptive membrane-type substrates made of a composite material based on biogenic hydroxyapatite are also presented.

Key words

biogenic hydrosilicates hydroxyapatite ceramic microstructure biochemical activity membrane-type substrates carriers of cultivated stem cell colonies cloned cells of fibroblasts cell adhesion proliferation activity 


  1. 1.
    P. Kasten, R. Luginbühl, van Griensven, et al. “Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate, and demineralized bone matrix,” Biomaterials, 24, 2593 – 2603 (2003).CrossRefGoogle Scholar
  2. 2.
    V. G. Klimovitskii, V. K. Grin’, I. V. Vasilenlko, et al., “Inductive properties of carriers of mesemchymal stem cells,” Travma, 8(3), 243 – 247 (2007).Google Scholar
  3. 3.
    C. Knabe, G. Berger, R. Gilderhaar, et al., “The functional expression of human bone-derived cells grown on rapidly resorbable calcium phosphate ceramics,” Biomaterial, 25, 335 – 344 (2004).CrossRefGoogle Scholar
  4. 4.
    D. L. Mastryukova, B. I. Beletskii, and O. V. Polukhina, “Glass ceramic with regulatable pore structure for medicine,” Steklo Keram., No. 4, 23 – 26 (2007); D. L. Mastryukova, B. I. Beletskii, and O. V. Polukhina, “Glass ceramics with controllable pore structure for medicine,” Glass Ceram., 64(3 – 4), 132 – 135 (2007).Google Scholar
  5. 5.
    V. S. Sulima and L. M. Panchenko, “Immunological substantiation of the possibilities of practicable biogenic hydroxyapatite based materials for replacing bone defects,” Galitskii Likars’kii Visnik, 9(1), 87 – 89 (2002).Google Scholar
  6. 6.
    O. R. Parkhomei, L. A. Ivanchenko, R. V. Luchko, and N. D. Pinchuk, “Carbon biomaterial, Patent for useful model No. 37194,” published November 25, 2008; Byul., No. 22 (2008).Google Scholar
  7. 7.
    O. Sych, N. Pinchuk, A. Parkhomey, et al., “Morphology and properties of new porous biocomposites based on biogenic hydroxyapatite and synthetic calcium phosphates,” Functional Mater., 14(4), 430 – 435 (2007).Google Scholar
  8. 8.
    K. Haberko, M. Buèko, Ja Brzeziòska-Miecznik, et al., “Natural hydroxyapatite — its behavior during heat treatment,” J. Euro. Ceram. Soc., 26, 537 – 542 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. A. Ivanchenko
    • 1
  • A. R. Parkhomei
    • 1
  • A. G. Popandopulo
    • 2
  • A. V. Oberemko
    • 2
  1. 1.I. N. Frantsevich Institute of Materials Science, National Academy of Sciences of UkraineKievUkraine
  2. 2.V. K. Gusak National Institute of Urgent and Reconstructive Surgery, Ukrainian Academy of Medical SciencesDonetskUkraine

Personalised recommendations