Skip to main content
Log in

Synthesis of iron aluminates and a new modification of aluminum oxide under shock waves from explosives (Review)

  • Science for Ceramic Production
  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Abstract

The results of an x-ray diffraction investigation of iron aluminate with unit cell parameter a = 8.090(4) Å, cation-defective iron aluminate Fe0.5Al2.23O4 with a = 8.002 Å, and a new modification of aluminum oxide synthesized under shock waves from explosives containing aluminum are presented. Aluminum oxide can crystallize in the hexagonal system in a primitive lattice with a = 9.151(1) Å, c = 7.945(2) Å, V = 576 Å3 or in a tetragonal system in a primitive lattice with one-half the volume — a = 7.941(2) Å, c = 4.575(1) Å, V = 288 Å3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “Synthesis of a new modification of aluminum oxide with spinel structure by a shock-wave impact on gibbsite,” Steklo Keram., No. 8, 16–18 (1999).

    Google Scholar 

  2. A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “Shock-wave synthesis of aluminum oxide with spinel structure from zincite and aluminum,” Steklo Keram., No. 4, 23 (2001).

  3. V. G. Khotin, A. N. Tsvigunov, and A. S. Krasikov, “Results of x-ray phase analysis of the products of the explosion of aluminum-containing explosive mixtures,” in: All-Russia Scientific and Technical Conference on Progress in Chemistry and Special Chemistry and Chemical Technology [in Russian], Part 2, Moscow (2005), pp. 197–201.

  4. A. Navrotsky, B. A. Wechsler, K. Gaisinger, and F. Seifert, “Thermal chemistry of MgAl2O4-Al8/3O4 defect of spinels,” J. Am. Ceram. Soc., 69(5), 418–422 (1986).

    Article  CAS  Google Scholar 

  5. W. Guse and H. Saalfeld, “X-ray characterization and structure refinement of a new cubic alumina phase (σ-Al2O3) with spinel-type structure,” N. Jb. Miner. Mn., 5, 217–226 (1990).

    Google Scholar 

  6. A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, T. B. Puzyreva, et al., “FeAl2O4 synthesis by shockwave action,” Steklo Keram., No. 9, 17–18 (1998).

    Google Scholar 

  7. R. M. Harzen and R. Jeanloz, “Wustite (Fe1−δO): a review of its defect structure,” Rev. Geophys. Space Phys., 22(1), 37–41 (1984).

    Article  Google Scholar 

  8. T. Katsura, V. Iwasaki, S. Kimura, and S. Akimoto, “High-pressure synthesis of the stoichiometric compound FeO,” Chem. Phys., 47(11), 4559–4560 (1967).

    Article  CAS  Google Scholar 

  9. T. N. Rezukhina, V. A. Levitskii, and P. I. Ozhegov, “Thermodynamic properties of iron aluminate, ” Fiz. Khim., 37(3), 687–688 (1963).

    Google Scholar 

  10. Mc. Lean and R. G. Ward, “Thermodynamics of hercynite formation,” JISI, 204(1), 8–11 (1966).

    Google Scholar 

  11. S. B. Bohlen, W. A. Dollase, and V. J. Wall, “Calibration and application of spinel equilibria in the system FeO-Al2O3-SiO2,” J. Petrol., 27(5), 1143–1156 (1986).

    CAS  Google Scholar 

  12. A. N. Tsigunov, A. V. Belyakov, P. D. Sarkisov, et al., “Synthesis of non-stoichiometric aluminomagnesia spinel with a tetragonal lattice,” Steklo Keram., No. 11, 14–19 (2006).

    Google Scholar 

  13. E. S. Makarov, Isomorphism of Atoms and Crystals [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

  14. A. Hoffmann and W. A. Fischer, “Formation of the spinel FeO-Al2O3 and its solid solutions with Fe3O4 and Al2O3,” Z. Phys. Chem., 7(1–2), 80–90 (1956).

    CAS  Google Scholar 

  15. L. M. Atlas and W. K. Sumida, “Solidus, subsolidus, and subdissociation phase equilibria in the system Fe-Al-O,” J. Am. Ceram. Soc., 41(5), 150–160 (1958).

    Article  CAS  Google Scholar 

  16. A. C. Turnock and H. P. Eugster, “Fe-Al oxides: phase relationships below 1000°C,” J. Petrology, 3(3), 533–565 (1962).

    CAS  Google Scholar 

  17. G. Dehe, B. Seifel, K. Melzer, and C. Michalk, “Determination of the cation distribution model of the spinel system Fe3xAlxO4,” Phys. Status Solidi A, 31(2), 439–447 (1975).

    Article  CAS  Google Scholar 

  18. S. J. Pickart and A. C. Turnock, “Magnetic properties of solid solutions of Fe3O4 and FeAl2O4,” J. Phys. Chem. Solids, 10(2–3), 242–244 (1959).

    Article  CAS  Google Scholar 

  19. C. E. Meyers, T. O. Mason, W. T. Petuskey, et al., “Phase equilibria in the system Fe-Al-O,” J. Am. Ceram. Soc., 63(11–12), 659–663 (1980).

    Article  CAS  Google Scholar 

  20. T. O. Mason and H. K. Brown, “Cation distribution and defect chemistry of iron-aluminate spinels, ” J. Am. Ceram. Soc. 64(2), 86–90 (1981).

    Article  CAS  Google Scholar 

  21. V. S. Urusov, “Interaction of cations on octahedral and tetrahedral sites in simple spinels,” Phys. Chem. Mineral., 9(1), 1–5 (1983).

    Article  CAS  Google Scholar 

  22. R. J. Hill, “X-ray powder diffraction profile refinement of synthetic hercynite,” Am. Mineral., 69(9-10). 937–942 (1984).

    CAS  Google Scholar 

  23. L. Larsson, H. St. O’Neili, and H. Annerstan, “Crystal chemistry of synthetic hercynite (FeAl2O4) from XRD structural refinements and Mössbauer spectroscopy,” Eur. J. Mineral., 6(5), 39–51 (1994).

    CAS  Google Scholar 

  24. C. M. Yagnik and H. B. Mathur, “A Mössbauer and x-ray diffraction study on the cation distribution in FeAl2O4,” J. Phys. C. Sol. State Phys., 1(2), 469–472 (1968).

    Article  Google Scholar 

  25. A. B. Woodland and B. J. Wood, “Breakdown of hercynite at low f O2,” Am. Mineral., 75(11–12), 1342–1348 (1990).

    CAS  Google Scholar 

  26. K. Shirasuka, G. Yamaquchi, and Y. Miyachi, “Composition and structure solid solution in the system of ZnO-Al2O3,” J. Ceram. Soc. Jpn., 84(4), 170–175 (1976).

    CAS  Google Scholar 

  27. A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “Shock-wave synthesis of nonstoichiometric alumozinc spinel and ganite,” Steklo Keram., No. 10, 24–25 (2001).

  28. F. Colin and J. Thery, “Chemical properties of mixed oxides based on alumina: reduction of the spinels MgAl2O4 and ZnAl2O4,” Rev. Chem. Miner., 3(1), 121–134 (1966).

    CAS  Google Scholar 

  29. G. T. Afanas’ev and V. K. Bobolev, Impact Initiation of Solid Explosives [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  30. Chi-Tang Li, “Transformation mechanism between high-quartz and keatite phases of LiAlSi2O6 composition,” Acta Cryst., 8(27), 1132–1140 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Steklo i Keramika, No. 12, pp. 15–22, December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvigunov, A.N., Apolenis, A.V., Annikov, V.É. et al. Synthesis of iron aluminates and a new modification of aluminum oxide under shock waves from explosives (Review). Glass Ceram 64, 429–436 (2007). https://doi.org/10.1007/s10717-007-0106-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-007-0106-4

Keywords

Navigation