Glass and Ceramics

, Volume 64, Issue 11–12, pp 429–436 | Cite as

Synthesis of iron aluminates and a new modification of aluminum oxide under shock waves from explosives (Review)

  • A. N. Tsvigunov
  • A. V. Apolenis
  • V. É. Annikov
  • V. M. Raikova
Science for Ceramic Production


The results of an x-ray diffraction investigation of iron aluminate with unit cell parameter a = 8.090(4) Å, cation-defective iron aluminate Fe0.5Al2.23O4 with a = 8.002 Å, and a new modification of aluminum oxide synthesized under shock waves from explosives containing aluminum are presented. Aluminum oxide can crystallize in the hexagonal system in a primitive lattice with a = 9.151(1) Å, c = 7.945(2) Å, V = 576 Å3 or in a tetragonal system in a primitive lattice with one-half the volume — a = 7.941(2) Å, c = 4.575(1) Å, V = 288 Å3.


Unit Cell Parameter Gibbsite Nickel Ferrite Octahedral Position Hercynite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “Synthesis of a new modification of aluminum oxide with spinel structure by a shock-wave impact on gibbsite,” Steklo Keram., No. 8, 16–18 (1999).Google Scholar
  2. 2.
    A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “Shock-wave synthesis of aluminum oxide with spinel structure from zincite and aluminum,” Steklo Keram., No. 4, 23 (2001).Google Scholar
  3. 3.
    V. G. Khotin, A. N. Tsvigunov, and A. S. Krasikov, “Results of x-ray phase analysis of the products of the explosion of aluminum-containing explosive mixtures,” in: All-Russia Scientific and Technical Conference on Progress in Chemistry and Special Chemistry and Chemical Technology [in Russian], Part 2, Moscow (2005), pp. 197–201.Google Scholar
  4. 4.
    A. Navrotsky, B. A. Wechsler, K. Gaisinger, and F. Seifert, “Thermal chemistry of MgAl2O4-Al8/3O4 defect of spinels,” J. Am. Ceram. Soc., 69(5), 418–422 (1986).CrossRefGoogle Scholar
  5. 5.
    W. Guse and H. Saalfeld, “X-ray characterization and structure refinement of a new cubic alumina phase (σ-Al2O3) with spinel-type structure,” N. Jb. Miner. Mn., 5, 217–226 (1990).Google Scholar
  6. 6.
    A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, T. B. Puzyreva, et al., “FeAl2O4 synthesis by shockwave action,” Steklo Keram., No. 9, 17–18 (1998).Google Scholar
  7. 7.
    R. M. Harzen and R. Jeanloz, “Wustite (Fe1−δO): a review of its defect structure,” Rev. Geophys. Space Phys., 22(1), 37–41 (1984).CrossRefGoogle Scholar
  8. 8.
    T. Katsura, V. Iwasaki, S. Kimura, and S. Akimoto, “High-pressure synthesis of the stoichiometric compound FeO,” Chem. Phys., 47(11), 4559–4560 (1967).CrossRefGoogle Scholar
  9. 9.
    T. N. Rezukhina, V. A. Levitskii, and P. I. Ozhegov, “Thermodynamic properties of iron aluminate, ” Fiz. Khim., 37(3), 687–688 (1963).Google Scholar
  10. 10.
    Mc. Lean and R. G. Ward, “Thermodynamics of hercynite formation,” JISI, 204(1), 8–11 (1966).Google Scholar
  11. 11.
    S. B. Bohlen, W. A. Dollase, and V. J. Wall, “Calibration and application of spinel equilibria in the system FeO-Al2O3-SiO2,” J. Petrol., 27(5), 1143–1156 (1986).Google Scholar
  12. 12.
    A. N. Tsigunov, A. V. Belyakov, P. D. Sarkisov, et al., “Synthesis of non-stoichiometric aluminomagnesia spinel with a tetragonal lattice,” Steklo Keram., No. 11, 14–19 (2006).Google Scholar
  13. 13.
    E. S. Makarov, Isomorphism of Atoms and Crystals [in Russian], Atomizdat, Moscow (1973).Google Scholar
  14. 14.
    A. Hoffmann and W. A. Fischer, “Formation of the spinel FeO-Al2O3 and its solid solutions with Fe3O4 and Al2O3,” Z. Phys. Chem., 7(1–2), 80–90 (1956).Google Scholar
  15. 15.
    L. M. Atlas and W. K. Sumida, “Solidus, subsolidus, and subdissociation phase equilibria in the system Fe-Al-O,” J. Am. Ceram. Soc., 41(5), 150–160 (1958).CrossRefGoogle Scholar
  16. 16.
    A. C. Turnock and H. P. Eugster, “Fe-Al oxides: phase relationships below 1000°C,” J. Petrology, 3(3), 533–565 (1962).Google Scholar
  17. 17.
    G. Dehe, B. Seifel, K. Melzer, and C. Michalk, “Determination of the cation distribution model of the spinel system Fe3xAlxO4,” Phys. Status Solidi A, 31(2), 439–447 (1975).CrossRefGoogle Scholar
  18. 18.
    S. J. Pickart and A. C. Turnock, “Magnetic properties of solid solutions of Fe3O4 and FeAl2O4,” J. Phys. Chem. Solids, 10(2–3), 242–244 (1959).CrossRefGoogle Scholar
  19. 19.
    C. E. Meyers, T. O. Mason, W. T. Petuskey, et al., “Phase equilibria in the system Fe-Al-O,” J. Am. Ceram. Soc., 63(11–12), 659–663 (1980).CrossRefGoogle Scholar
  20. 20.
    T. O. Mason and H. K. Brown, “Cation distribution and defect chemistry of iron-aluminate spinels, ” J. Am. Ceram. Soc. 64(2), 86–90 (1981).CrossRefGoogle Scholar
  21. 21.
    V. S. Urusov, “Interaction of cations on octahedral and tetrahedral sites in simple spinels,” Phys. Chem. Mineral., 9(1), 1–5 (1983).CrossRefGoogle Scholar
  22. 22.
    R. J. Hill, “X-ray powder diffraction profile refinement of synthetic hercynite,” Am. Mineral., 69(9-10). 937–942 (1984).Google Scholar
  23. 23.
    L. Larsson, H. St. O’Neili, and H. Annerstan, “Crystal chemistry of synthetic hercynite (FeAl2O4) from XRD structural refinements and Mössbauer spectroscopy,” Eur. J. Mineral., 6(5), 39–51 (1994).Google Scholar
  24. 24.
    C. M. Yagnik and H. B. Mathur, “A Mössbauer and x-ray diffraction study on the cation distribution in FeAl2O4,” J. Phys. C. Sol. State Phys., 1(2), 469–472 (1968).CrossRefGoogle Scholar
  25. 25.
    A. B. Woodland and B. J. Wood, “Breakdown of hercynite at low f O2,” Am. Mineral., 75(11–12), 1342–1348 (1990).Google Scholar
  26. 26.
    K. Shirasuka, G. Yamaquchi, and Y. Miyachi, “Composition and structure solid solution in the system of ZnO-Al2O3,” J. Ceram. Soc. Jpn., 84(4), 170–175 (1976).Google Scholar
  27. 27.
    A. N. Tsvigunov, V. G. Khotin, A. S. Krasikov, and B. S. Svetlov, “Shock-wave synthesis of nonstoichiometric alumozinc spinel and ganite,” Steklo Keram., No. 10, 24–25 (2001).Google Scholar
  28. 28.
    F. Colin and J. Thery, “Chemical properties of mixed oxides based on alumina: reduction of the spinels MgAl2O4 and ZnAl2O4,” Rev. Chem. Miner., 3(1), 121–134 (1966).Google Scholar
  29. 29.
    G. T. Afanas’ev and V. K. Bobolev, Impact Initiation of Solid Explosives [in Russian], Nauka, Moscow (1968).Google Scholar
  30. 30.
    Chi-Tang Li, “Transformation mechanism between high-quartz and keatite phases of LiAlSi2O6 composition,” Acta Cryst., 8(27), 1132–1140 (1971).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. N. Tsvigunov
    • 1
  • A. V. Apolenis
    • 1
  • V. É. Annikov
    • 1
  • V. M. Raikova
    • 1
  1. 1.D. I. Mendeleev Russian Chemical Engineering UniversityMoscowRussia

Personalised recommendations