Glass and Ceramics

, Volume 63, Issue 11–12, pp 371–376 | Cite as

Synthesis of nonstoichiometric aluminomagnesium spinel with a tetragonal lattice (review)

  • A. N. Tsvigunov
  • A. V. Belyakov
  • P. D. Sarkisov
  • P. P. Faikov
  • N. T. Andrianov
  • B. V. Zhadanov
  • Yu. V. Ivleva
Science for Ceramics Production


The results of x-ray diffraction and IR-spectroscopic studies of samples of nonstoichiometric aluminomagnesium spinel Mg1−x Al2−y O4−z (OH)z formed after treating aluminomagnesium spinel synthesized by the sol-gel method at temperatures of 800 and 1100°C with concentrated acids, are reported. It was found that three phases of nonstoichiometric aluminomagnesium spinel Mg1−x Al2−y O4−z (OH)z with tetragonal lattices and a different type of superstructure are formed. The x-ray patterns of the two phases correspond to body-centered lattices with parameters a = 5.712(3) Å, c = 8.092(3) Å, and a = 5.714(3) Å. The x-ray pattern of the third phase was indexed in a primitive tetragonal lattice: a = 5.718(3) Å, c = 24.261(27) Å.


Octahedral Position Tetrahedral Position Octahedral Vacancy Fedorov Group Aluminomagnesium Spinel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Tsvigunov, A. S. Krasikov, and V. G. Khotin, “Combined shock-wave synthesis of noble spinel and cubic Laves phase,” Steklo Keram., No. 6, 21–22 (2006)l.Google Scholar
  2. 2.
    E. S. Makarov, Isomorphism of Atoms in Crystals [in Russian], Atomizdat, Moscow (1973).Google Scholar
  3. 3.
    V. G. Tsirel’son, E. L. Belokoneva, Yu. Z. Nozik, and V. S. Urusov, “MgAl2O4 spinel: features of the atomic and electron structure based on precision x-ray diffraction data,” Geokhimiya, No. 7, 1035–1042 (1986).Google Scholar
  4. 4.
    Yu. Z. Nozik, L. A. Muradyan, L. S. Dubrovinskii, and V. S. Urusov, “Anharmonicity of thermal oscillations of atoms in the structure of a noble spinel,” Geokhimiya, No. 3, 437–444 (1988).Google Scholar
  5. 5.
    L. W. Fisher, “Neutronenbeugungsuntersuchung der Strukturen von MgAl2O4 und ZnAl2O4 Spinellen, in Abhängigkeit von der Vorgeschichte,” Z. Krist., 124(4–5), 275–302 (1967).CrossRefGoogle Scholar
  6. 6.
    E. Brun and S. Hafner, “Die Elektrische Quadrupolaufspaltung von Al27 in Spinell MgAl2O4 und Korund Al2O3. I. Paramagnetische Kernresonanz von Al27 und Kationenverteilung in Spinell,” Z. Krist., 117(1), 37–62 (1962).CrossRefGoogle Scholar
  7. 7.
    U. Schmocker and F. Waldner, “The inversion parameter with respect to the space group of MgAl2O4spinels,” J. Phys. C, 9(9), 1235–1237 (1976).CrossRefGoogle Scholar
  8. 8.
    T. Yamanaka and Y. Takeuchi, “Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700°C,” Z. Krist., 165(1–4), 65–78 (1983).CrossRefGoogle Scholar
  9. 9.
    F. Rinne, “Morphologische und Physikalisch-chemische Untersuchungen an Sintetischen Spinellen als Beispiele Unstochiometrisch Zusammengesetzter Stoffe,” N. Jb. Miner.(A) Abh., 58, 43–108 (1928).Google Scholar
  10. 10.
    H. Saalfeld and H. Yagodzinski, “Die Entmischung Al2O3-übersättigter Mg-Al Spinelle,” Z. Krist., 109(2), 87–109 (1957).CrossRefGoogle Scholar
  11. 11.
    H. Yagodzinski and H. Saalfeld, “Kationenverteilung und Structur beziehungen Mg-Al Spinellen,” Z. Krist., 110(3), 197–218 (1958).CrossRefGoogle Scholar
  12. 12.
    A. Navrotsky, V. A. Wechsler, K. Gaisinger, and F. Seifert, “Thermochemistry of MgAl2O4-Al8/3O4 defect spinels,” J. Am. Ceram. Soc., 69(5), 418–422 (1986).CrossRefGoogle Scholar
  13. 13.
    E. M. Moroz, V. N. Kuklina, and V. A. Ushakov, “Formation of low-temperature solid solutions and nonstoichiometric spinels in aluminomagnesium systems,” Kinet. Katal., 28(3), 699–705 (1987).Google Scholar
  14. 14.
    A. Lejus, “On the formation of nonstoichiometric spinels and derivative phases at high temperatures,” Rev. Int. Hautes Temp. Refract., 1(1), 53–95 (1964).Google Scholar
  15. 15.
    M. Ishii, J. Hiraishi, and T. Yamanara, “Structure and lattice vibrations of Mg-Al spinel solid solution,” Phys. Chem. Minerals, 8(2), 64–68 (1982).CrossRefGoogle Scholar
  16. 16.
    H. Rooksby and C. J. M. Roomans, “The formation and structure of delta alumina,” Clay Mineral Bull., 4(25), 234–238 (1961).CrossRefGoogle Scholar
  17. 17.
    H. Saalfeld, “The dehydration of gibbsite and the structure of a tetragonal λ-Al2O3,” Clay Mineral Bull., 3(19), 249–256 (1958).CrossRefGoogle Scholar
  18. 18.
    G. Yamaguchi and H. Yanagida, “On the relation among γ-, η-, and δ-Al2O3 under hydrothermal conditions,” Bull. Chem. Soc. Jpn., 35(11), 1896–1897 (1962).CrossRefGoogle Scholar
  19. 19.
    S. J. Wilson and J. D. C. McConell, “A kinetic study of the system γ-AlOOH/Al2O3,” Solid State Chem., 34(3), 315–322 (1980).CrossRefGoogle Scholar
  20. 20.
    V. A. Ushakov and E. M. Moroz, “X-ray study of aluminum oxides. II. Full-profile x-ray analysis of low-temperature forms,” Kinet. Katal., 26(4), 972 (1985).Google Scholar
  21. 21.
    Y. Repelin and E. Husson, “Etudes structurales d’alumines de transition. I-Alumines gamma et delta,” Mater. Res. Bull., 25(5), 611–621 (1990).CrossRefGoogle Scholar
  22. 22.
    S. V. Tsybulya, L. P. Solov’eva, G. N. Kryukova, and É. M. Moroz, “Study of non-stoichiometric spinels using full-profile analysis. I. Refinement of the cation distribution and study of the real structure of non-stoichiometric aluninomagnesium spinel,” Zh. Strukt. Khim., 32(3), 18–25 (1991).Google Scholar
  23. 23.
    A. V. Belyakov, P. P. Faikov, A. N. Tsvigunov, et al., “Synthesis of aluninomagnesium spinel with MgO in excess upon change in the cation flow rate,” Steklo Keram., No. 2, 14–19 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. N. Tsvigunov
    • 1
  • A. V. Belyakov
    • 1
  • P. D. Sarkisov
    • 1
  • P. P. Faikov
    • 1
  • N. T. Andrianov
    • 1
  • B. V. Zhadanov
    • 1
  • Yu. V. Ivleva
    • 1
  1. 1.D. I. Mendeleev Russian Chemical Engineering UniversityMoscowRussia

Personalised recommendations