An Ostrogradsky instability analysis of non-minimally coupled Weyl connection gravity theories

Abstract

We study the Hamiltonian formalism of the non-minimally coupled Weyl connection gravity (NMCWCG) in order to check whether Ostrogradsky instabilities are present. The Hamiltonian of the NMCWCG theories is obtained by foliating space-time into a real line (representing time) and 3-dimensional space-like hypersurfaces, and by considering the spatial metric and the extrinsic curvature of the hypersurfaces as the canonical coordinates of the theory. Given the fact that the theory we study contains an additional dynamical vector field compared to the usual NMC models, which do not have Ostrogradsky instabilities, we are able to construct an effective theory without these instabilities, by constraining this Weyl field.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    In this paper we adopt the standard symplectic form for the space (QP).

  2. 2.

    This comes from the hypothesis that the Lagrangian does not dependent explicitly on time.

  3. 3.

    This foliation is necessary since we require the Hamiltonian of the NMCWCG theory and this formalism depends on singling out time (which we shall denote as \({\mathbf {t}}\)).

  4. 4.

    In this section we use the notation \({{\mathcal {D}}}\) for a generic covariant derivative. Only in the next section we shall recall it as the Weyl connection. For this reason, we shall call \({\hat{R}}^{\lambda }_{\mu \nu \sigma }\) the Riemann tensor corresponding to the connection \({{\mathcal {D}}}\).

  5. 5.

    In Eq. (4.5) we have used the metric as the linear map \({\mathbf {g}}(p):T_pM\times T_pM\rightarrow {\mathbb {R}},\ \forall \,p\in M\), where \(T_pM\) is the tangent space of the space-time manifold M at a point \(p\in M\). In the following sections, we use this definition more often.

  6. 6.

    In this definition we have used that, given two tensors \(T_\mu \) and \(S_\mu \), \(T_{[\mu }S_{\nu ]}\equiv \frac{1}{2}(T_\mu S_\nu -T_\nu S_\mu )\). In a later expression we shall use the similar definition \(T_{(\mu }S_{\nu )}\equiv \frac{1}{2}(T_\mu S_\nu +T_\nu S_\mu )\).

  7. 7.

    Notice that now \({\mathcal {D}}_\lambda =D_\lambda \) and \({\hat{R}}^{\lambda }_{\mu \nu \sigma }={\bar{R}}^{\lambda }_{\mu \nu \sigma }\), etc.

  8. 8.

    In Eq. (5.5) we are using the dot as the time derivative following Eq. (4.4).

  9. 9.

    Notice that, if we make \(A_\mu =0\) in all previous equations of this Section, there are no odd powered terms of the extrinsic curvature and, hence, no Ostrogradsky instability in NMC gravity theories (Eq. (1.1)), as expected.

References

  1. 1.

    Bertolami, O., Boehmer, C.G., Harko, T., Lobo, F.S.N.: Phys. Rev. D 75, 104016 (2007). arXiv:0704.1733 [gr-qc]

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Gomes, C., Rosa, J.G., Bertolami, O.: JCAP 1706, 021 (2017). https://doi.org/10.1088/1475-7516/2017/06/021. arXiv:1611.02124 [gr-qc]

    ADS  Article  Google Scholar 

  3. 3.

    Bertolami, O., Frazāo, P., Páramos, J.: Phys. Rev. D 81, 104046 (2010). arXiv:1003.0850 [gr-qc]

    ADS  Article  Google Scholar 

  4. 4.

    Bertolami, O., Frazāo, P., Páramos, J.: Phys. Rev. D 83, 044010 (2011). arXiv:1010.2698 [gr-qc]

    ADS  Article  Google Scholar 

  5. 5.

    Bertolami, O., Frazāo, P., Páramos, J.: Phys. Rev. D 86, 044034 (2012). arXiv:1111.3167 [gr-qc]

    ADS  Article  Google Scholar 

  6. 6.

    Bertolami, O., Páramos, J.: J. Cosmol. Astropart. Phys. 1003, 009 (2010). arXiv:0906.4757

    ADS  Article  Google Scholar 

  7. 7.

    Bertolami, O., Páramos, J.: Int. J. Geom. Meth. Mod. Phys. 11, 1460003 (2014). https://doi.org/10.1142/S0219887814600032. arXiv:1309.0292 [gr-qc]

    Article  Google Scholar 

  8. 8.

    Gomes, C., Bertolami, O.: Class. Quant. Grav. 36(23), 235016 (2019). arXiv:1812.04976 [gr-qc]

  9. 9.

    Baptista, R., Bertolami, O.: Class. Quant. Grav. 37(8), 085011 (2020). arXiv:1911.04983 [gr-qc]

  10. 10.

    Woodard, R.P.: Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 10, 32243 (2015). arXiv:1506.02210

  11. 11.

    Querella, L.: Variational principles and cosmological models in higher order gravity, Ph.D. Thesis, University of Liege (1998). arXiv:9902044 [gr-qc]

  12. 12.

    Grøn, Ø., Hervik, S.: Einstein’s Theory of General Relativity with Modern Applications in Cosmology. Springer (2007)

  13. 13.

    Bento, M.C., Bertolami, O., Moniz, P.V., Mourão, J.M., Sá, P.M.: Gen. Relativ. Gravit. 10, 285–298283 (1993). https://doi.org/10.1088/0264-9381/10/2/010. arXiv:gr-qc/9302034 [gr-qc]

  14. 14.

    Bertolami, O., Mourāo, J.M., Picken, R.F., Volobujev, I.P.: Int. J. Mod. Phys. A 6(23), 4149–4180 (1991). https://doi.org/10.1142/S0217751X91002045

    ADS  Article  Google Scholar 

  15. 15.

    Bertolami, O., Kubyshin, Y.A., Mourão, J.M.: Phys. Rev. D 45, 3405–3414 (1992). https://doi.org/10.1103/PhysRevD.45.3405

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    Google Scholar 

  17. 17.

    Oksanen, M.: Hamiltonian Analysis of Modified Gravitational Theories: Towards a Renormalizable Theory of Gravity. Ph.D. Thesis, University of Helsinki (2013)

  18. 18.

    Motohashi, H., Suyama, T.: Phys. Rev. D 91, 8-085009 (2015). arXiv:1411.3721 [physics.class-ph]

  19. 19.

    Motohashi, H., Noui, K., Suyama, T., Yamaguchi, M., Langlois, D.: JCAP 1607, 07–033 (2016). arXiv:1603.09355 [hep-th]

    Google Scholar 

  20. 20.

    Motohashi, H., Suyama, T., Yamaguchi, M.: J. Phys. Soc. Jpn. 87, 063401 (2018). arXiv:1711.08125 [hep-th]

    ADS  Article  Google Scholar 

  21. 21.

    Motohashi, H., Suyama, T., Yamaguchi, M.: JHEP 1806, 133 (2018). arXiv:1804.07990 [hep-th]

    ADS  Article  Google Scholar 

  22. 22.

    Gourgoulhon, E.: \(3+1\) formalism and bases of numerical relativity, arXiv:0703035 [gr-qc]

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Baptista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baptista, R., Bertolami, O. An Ostrogradsky instability analysis of non-minimally coupled Weyl connection gravity theories. Gen Relativ Gravit 53, 12 (2021). https://doi.org/10.1007/s10714-021-02784-5

Download citation

Keywords

  • Non-minimally coupled gravity theories
  • Weyl connection
  • Ostrogradsky instabilities
  • Hamiltonian formalism