Superradiant instability and asymptotically AdS hairy black holes in F(R)-charged scalar field theory


We study the phenomena of superradiance for F(R)-Maxwell black holes in an AdS space-time. The AdS boundary plays the role of a mirror and provides a natural confining system that makes the superradiant waves bouncing back and forth between the region near the horizon and the reflective boundary, causing a possible superradiant instability. We obtain numerical solutions for static hairy black holes in this scenario and investigate their instability and explicitly address the stability of such solutions for spherical perturbations under specific conditions for the scalar charge and AdS radius. It is shown that for a small scalar charge or AdS radius the static hairy solution is stable under spherical perturbations. We conclude that under such conditions, new hairy black holes emerge as a possible endpoint of superradiant instability of the system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Given that the charge Q is constrained by the positive definiteness of Hawking temperature \(T_{H}=\frac{N'(r_{h})}{4\pi }=\frac{1}{4\pi }\left[ \frac{1}{r_{h}}-\frac{Q^2}{(1+f_{R}(R_{0}))r_{h}^3}- \frac{R_{0}r_{h}}{4}\right] \), then \(Q\le \sqrt{(1+f_{R}(R_{0}))(r_{h}^2+\frac{3r_{h}^4}{L^2})}\equiv Q_{c}\), where \(Q_{c}\) is the critical charge [51, 61]. For a small black hole \(\frac{r_{h}}{L} \ll 1\) and the critical charge becomes \(Q_{c}=\sqrt{(1+f_{R}(R_{0}))}r_{h}(1+\frac{3r_{h}^2}{2L^2})\ll L\).

  2. 2.

    Due to the behavior of the radial function near the horizon (15), an observer far from the black hole could see that the waves are coming out from the black hole provided that \(\omega \) satisfies superradiant condition (16). In contrast, due to the negative group velocity, a local observer of the black hole sees only waves going into the horizon and therefore the boundary condition is satisfied [61].

  3. 3.

    Note that the superradiant condition is given by \( \omega r_{h}-q Q< 0\) for the RN black hole.

  4. 4.

    We construct hairy black hole solutions near the critical frequency (\(\omega _{c}\)) which is the onset of superradiant instability [34], since it seems sensible to expect superradiant instability to end as a hairy black hole.

  5. 5.

    The hairy black hole for which the scalar field has only one node (\(n=0\)) at the AdS boundary is described as a weakly interacting mix of a RNAdS black hole and a condensate of the ground state of the scalar field [65].

  6. 6.

    The solutions with more nodes correspond to weakly interacting mix of the RNAdS black hole and an excited state of the scalar field. They are unstable and presumably decay to the ground state of the hairy black hole [65].


  1. 1.

    Townsend, P.K.: Lect. Notes Phys. arXiv:9707012 [gr-qc]

  2. 2.

    Herdeiro, C.A., Radu, E.: Int. J. Mod. Phys. D 24, 1542014 (2015). arXiv:1504.08209 [gr-qc]

    ADS  Google Scholar 

  3. 3.

    Schwarzschild, K.: Math. phys. 189 (1916). arXiv:9905030 [physics]

  4. 4.

    Bicak, J.: Math. Phys. 2, 165 (2006). arXiv:0604102 [gr-qc]

    ADS  Google Scholar 

  5. 5.

    Ruffini, R., Wheeler, J.A.: Phys. Today 24, 30 (1971)

    ADS  Google Scholar 

  6. 6.

    Israel, W.: Phys. Rev. 164, 1776 (1967)

    ADS  Google Scholar 

  7. 7.

    Volkov, M.S.: arXiv:1601.08230 [gr-qc]

  8. 8.

    Volkov, M.S., Gal’Tsov, D.V.: JETP Lett. 50, 346 (1989)

    ADS  Google Scholar 

  9. 9.

    Volkov, M.S., Gal’Tsov, D.V.: Sov. J. Nucl. Phys. 51, 747 (1990)

    Google Scholar 

  10. 10.

    Dolan, S.R., Ponglertsakul, S., Winstanley, E.: Phys. Rev. D 92, 124047 (2015). arXiv:1507.02156 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  11. 11.

    Nolan, B.C., Winstanley, E.: Class. Quant. Grav. 29, 235024 (2012). arXiv:1208.3589 [gr-qc]

    ADS  Google Scholar 

  12. 12.

    Bekenstein, J.D.: Ann. Phys. 82, 535 (1974)

    ADS  Google Scholar 

  13. 13.

    Bekenstein, J.D.: Ann. Phys. 91, 75 (1975)

    ADS  Google Scholar 

  14. 14.

    Sudarsky, D., Zannias, T.: Phys. Rev. D 58, 087502 (1998). arXiv:9712083 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  15. 15.

    Brito, R., Cardoso, V., Pani, P.: Lect. Notes Phys. 906 (2015). arXiv:1501.06570 [gr-qc]

  16. 16.

    Klein, O.: Zeitschrift für Phys. 53, 157 (1929)

    ADS  Google Scholar 

  17. 17.

    Calogeracos, A., Dombey, N.: Contemp. Phys. 40, 313 (1999). arXiv:9905076 [quant-ph]

    ADS  Google Scholar 

  18. 18.

    Brito, R., Cardoso, V., Pani, P.: Phys. Rev. D 89, 104045 (2014). arXiv:1405.2098 [gr-qc]

    ADS  Google Scholar 

  19. 19.

    Press, W.H., Teukolsky, S.A.: Nature 238, 211–212 (1972)

    ADS  Google Scholar 

  20. 20.

    Cardoso, V.: Gen. Rel. Grav. 45, 2079 (2013). arXiv:1307.0038 [gr-qc]

    ADS  Google Scholar 

  21. 21.

    Hod, S.: Phys. Lett. B 708, 320 (2012). arXiv:1205.1872 [gr-qc]

    ADS  Google Scholar 

  22. 22.

    Hod, S.: Phys. Lett. B 758, 181 (2016). arXiv:1606.02306 [gr-qc]

    ADS  Google Scholar 

  23. 23.

    Hod, S.: Phys. Rev. D 90, 024051 (2014). arXiv:1406.1179 [gr-qc]

    ADS  Google Scholar 

  24. 24.

    Ponglertsakul, S., Winstanley, E.: Phys. Lett. B 764, 87 (2017). arXiv:1610.00135 [gr-qc]

    ADS  Google Scholar 

  25. 25.

    Hod, S.: Phys. Rev. D 88, 064055 (2013). arXiv:1310.6101 [gr-qc]

    ADS  Google Scholar 

  26. 26.

    Degollado, J.C., Herdeiro, C.A., Rúnarsson, H.F.: Phys. Rev. D 88, 063003 (2013). arXiv:1305.5513 [gr-qc]

    ADS  Google Scholar 

  27. 27.

    Degollado, J.C., Herdeiro, C.A.: Phys. Rev. D 89, 063005 (2014). arXiv:1312.4579 [gr-qc]

    ADS  Google Scholar 

  28. 28.

    Ganchev, B.: arXiv:1608.01798 [hep-th]

  29. 29.

    Cardoso, V., Dias, O.J.: Phys. Rev. D 70, 084011 (2004). arXiv:0405006 [hep-th]

    ADS  MathSciNet  Google Scholar 

  30. 30.

    Green, S.R., Hollands, S., Ishibashi, A., Wald, R.M.: Class. Quant. Grav. 33, 125022 (2016). arXiv:1512.02644 [gr-qc]

    ADS  Google Scholar 

  31. 31.

    González, P.A., Papantonopoulos, E., Saavedra, J., Vásquez, Y.: Phys. Rev. D 95, 6 (2017). arXiv:1702.00439 [gr-qc]

    Google Scholar 

  32. 32.

    Gual, N.S., Degollado, J.C., Montero, P.J., Font, J.A., Herdeiro, C.: Phys. Rev. Lett. 116, 141101 (2016). arXiv:1512.05358 [gr-qc]

    ADS  Google Scholar 

  33. 33.

    Bosch, P., Green, S.R., Lehner, L.: Phys. Rev. Lett. 116, 141102 (2016). arXiv:1601.01384 [gr-qc]

    ADS  Google Scholar 

  34. 34.

    Dias, O.J., Masachs, R.: JHEP 128, 2 (2017). arXiv:1610.03496 [hep-th]

    Google Scholar 

  35. 35.

    Dias, O.J., Figueras, P., Minwalla, S., Mitra, P., Monteiro, R., Santos, J.E.: JHEP 117, 8 (2012). arXiv:1112.4447 [hep-th]

    Google Scholar 

  36. 36.

    Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726 [gr-qc]

    ADS  Google Scholar 

  37. 37.

    Faraoni, V.: arXiv:0810.2602 [gr-qc]

  38. 38.

    De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3 (2010). arXiv:1002.4928 [gr-qc]

    Google Scholar 

  39. 39.

    Zhang, Z., Ma, Y.: Phys. Rev. Lett. 106, 17 (2011). arXiv:1101.1752 [gr-qc]

    Google Scholar 

  40. 40.

    Capozziello, S., Stabile, A., Troisi, A.: Phys. Rev. D 76, 104019 (2007). arXiv:0708.0723 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  41. 41.

    Hendi, S.H., Eslam Panah, B.E., Mousavi, S.M.: Gen. Rel. Grav. 44, 835 (2012). arXiv:1102.0089 [hep-th]

    ADS  Google Scholar 

  42. 42.

    Elizalde, E., Nojiri, S.L., Odintsov, S.D., Wang, P.: Phys. Rev. D 71, 103504 (2005). arXiv:0502082 [hep-th]

    ADS  Google Scholar 

  43. 43.

    Myrzakulov, R., Sebastiani, L., Zerbini, S.: Int. J. Mod. Phys. D 22, 1330017 (2013). arXiv:1302.4646 [gr-qc]

    ADS  Google Scholar 

  44. 44.

    Sebastiani, L., Zerbini, S.: Eur. Phys. J. C 71, 1591 (2011). arXiv:1012.5230 [gr-qc]

    ADS  Google Scholar 

  45. 45.

    Multamäki, T., Vilja, I.: Phys. Rev. D 74, 064022 (2006). arXiv:0606373 [astro-ph]

    ADS  MathSciNet  Google Scholar 

  46. 46.

    Sotitiou, T.P.: PhD thesis. arXiv:0710.4438 [gr-qc]

  47. 47.

    Bazeia, D., Losano, L., Olmo, G.J., Rubiera-Garcia, D.: Phys. Rev. D 90, 4 (2014). arxiv:1405.0208 [hep-th]

    Google Scholar 

  48. 48.

    Natsuume, M.: Book (903). Springer, Germany (2015). arXiv:1409.3575 [hep-th]

    Google Scholar 

  49. 49.

    Herzog, C.P.: J. Phys. A 42, 34 (2009). arXiv:0904.1975 [hep-th]

    Google Scholar 

  50. 50.

    Hartnoll, S.A.: Chapter of the book ‘Black Holes in Higher Dimensions’, arXiv:1106.4324 [hep-th]

  51. 51.

    Moon, T., Myung, Y.S., Son, E.J.: Gen. Rel. Grav. 43, 3079 (2011). arXiv:1101.1153 [gr-qc]

    ADS  Google Scholar 

  52. 52.

    Cembranos, J.A.R., de la Cruz-Dombriz, A., Jimeno Romero, P.: Int. J. Geom. Meth. Mod. Phys. 11, 1450001 (2011). arXiv:1109.4519 [gr-qc]

    Google Scholar 

  53. 53.

    Myung, Y.S.: Phys. Rev. D 88, 104017 (2013). arXiv:1309.3346 [gr-qc]

    ADS  Google Scholar 

  54. 54.

    Myung, Y.S.: Phys. Rev. D 84, 024048 (2011). arXiv:1104.3180 [gr-qc]

    ADS  Google Scholar 

  55. 55.

    Guarnizo, A.: M.Sc. Thesis. arXiv:1211.2444 [gr-qc]

  56. 56.

    Nojiri, S.I., Odintsov, S.D.: Phys. Rep. 505, 2–4 (2011). arXiv:1011.0544 [gr-qc]

    Google Scholar 

  57. 57.

    Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rept 692 (2017). arXiv:1705.11098 [gr-qc]

  58. 58.

    Faraoni, V.: Phys. Rev. D 74, 10 (2006). arXiv:0610734 [astro-ph]

    MathSciNet  Google Scholar 

  59. 59.

    de La Cruz-Dombriz, A., Dobado, A., Maroto, A.L.: Phys. Rev. D 80, 12 (2009). arXiv:0907.3872 [gr-qc]

    Google Scholar 

  60. 60.

    Sheykhi, A.: Phys. Rev. D 86, 2 (2012). arXiv:1209.2960 [hep-th]

    Google Scholar 

  61. 61.

    Uchikata, N., Yoshida, S.: Phys. Rev. D 83, 064020 (2011). arXiv:1109.6737 [gr-qc]

    ADS  Google Scholar 

  62. 62.

    Horowitz, G.T.: Lect. notes. arXiv:1002.1722 [hep-th]

  63. 63.

    Huang, Y., Liu, D.J., Li, X.Z.: Int. J. Mod. Phys. D 26, 1750141 (2017). arXiv:1606.00100 [gr-qc]

    ADS  Google Scholar 

  64. 64.

    Peng, Y., Wang, B., Liu, Y.: Eur. Phys. J. C 78, 3 (2018). arXiv:1708.01411 [hep-th]

    Google Scholar 

  65. 65.

    Basu, P., Bhattacharya, J., Bhattacharyya, S., Loganayagam, R., Minwalla, S., Umesh, V.: JHEP 45, 10 (2010). arXiv:1003.3232 [hep-th]

    Google Scholar 

  66. 66.

    Winstanley, E.: Phys. Rev. D 64, 104010 (2001). arXiv:0106032 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  67. 67.

    Heisenberg, L., Tsujikawa, S.: Phys. Lett. B 780, 638 (2018). arXiv:1802.07035 [gr-qc]

    ADS  Google Scholar 

  68. 68.

    Myung, Y.S., Moon, T., Son, E.J.: Phys. Rev. D 83, 12 (2011). arXiv:1103.0343 [gr-qc]

    Google Scholar 

  69. 69.

    Myung, Y.S., Zou, D.C.: arXiv:1804.03003 [gr-qc]

Download references


M. Honardoost would like to thank Iran National Science Foundation (INSF) and Research Council of Shahid Beheshti University for financial support. We also thank M. Khodadi for a careful reading of the manuscript and helpful comments.

Author information



Corresponding author

Correspondence to H. R. Sepangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix A

By assuming constant curvature, the field equation (3) in vacuum becomes

$$\begin{aligned} (1+f_{R})R_{\mu \nu }-\frac{1}{2}(R+f(R))g_{\mu \nu }=0. \end{aligned}$$

The trace of (44) leads to

$$\begin{aligned} (1+f_{R})R-2(R+f(R))=0. \end{aligned}$$

Now, substituting for f(R) in (45), one gets \(R_{0}=\pm \sqrt{3} \mu ^2 \) for \(f(R)=-\frac{\mu ^{4}}{R}\) and \(\lambda = \frac{R_{0} e^{\alpha R_{0}}}{2+\alpha R_{0}}\) for \(f(R)=-\lambda e^{-\alpha R}\), where \(\alpha \) is a free parameter, representing solutions which correspond to a topological Schwarzschild-AdS(dS) black hole. In the numerical solution, we fix \(R_{0}\) to get \(\mu ^{2}\) and \(\lambda \). In [59], by considering thermodynamics of black holes in an AdS space-time, the authors found that the necessary conditions for F(R) to support AdS black holes are

$$\begin{aligned}&R+f(R)<0, \end{aligned}$$
$$\begin{aligned}&1+f_{R}>0. \end{aligned}$$

In addition, the condition \(\frac{d^{2}f}{dR^{2}}\) guarantees that there is no tachyonic instability. These conditions may impose extra restrictions on \(R_{0}\). In the first model, only \(R_{0}=\mp \sqrt{3} \mu ^2\) would allow compliance with a topological Schwarzschild-AdS black hole. However, in the second model with the assumption \(\alpha >0\), these conditions require \(-\frac{1}{\alpha }<R_{0}<0\).

Appendix B

Perturbations of dynamical equations (3036), to first order, can be derived using definition of the perturbed quantities defined in the text with the result

$$\begin{aligned}&\frac{(1+{\bar{f}}_{R})\delta N'}{{\bar{N}}}- \left[ \frac{1+{\bar{f}}_{R}}{{\bar{N}}} \left( \bar{N'}-\frac{1}{r}\right) -\frac{r \bar{A_{0}'}^2}{2 {\bar{N}}{\bar{h}}}-\frac{{\bar{f}}r}{2{\bar{N}}}+\frac{{\bar{f}}_{R} r{\bar{R}}}{2{\bar{N}}}\right] \frac{\delta N}{{\bar{N}}} \nonumber \\&\quad =\left( \frac{q^2 \bar{A_{0}}^2 {\bar{\psi }}^2}{r {\bar{\xi }}^2}+\frac{r \bar{A_{0}}'^2}{{\bar{N}}{\bar{h}}}\right) \frac{\delta \xi }{{\bar{\xi }}}\nonumber \\&\qquad -\frac{q^2 \bar{A_{0}} {\bar{\psi }}^2}{r {\bar{\xi }}^2}\delta A-\frac{r \bar{A_{0}}'}{{\bar{N}}{\bar{h}}} \delta A'-{\bar{f}}_{RR} \left( \frac{1}{{\bar{N}}r}({\bar{N}}-1)+\frac{ r \bar{R_{0}}}{2 {\bar{N}}}+\frac{{\bar{N}}'}{{\bar{N}}}\right) \delta R\nonumber \\&\qquad -\frac{i q \bar{A_{0}} {\bar{\psi }}}{2 r {\bar{\xi }}^2}(\delta {\dot{\psi }}-\delta {\dot{\psi }}^*) -\left( \frac{{\bar{\psi }}}{2 r}\right) ' \nonumber \\&\qquad \times (\delta \psi '+\delta \psi '^*)+\left[ \frac{\left( \frac{{\bar{\psi }}}{r}\right) '}{2 r}-\frac{q^2\bar{A_{0}}^2 {\bar{\psi }}}{2 r {\bar{\xi }}^2}\right] (\delta \psi +\delta \psi ^*), \end{aligned}$$
$$\begin{aligned}&\frac{(1+{\bar{f}}_{R})\delta h'}{{\bar{h}}}-\frac{(1+{\bar{f}}_{R})\bar{h'}\delta h}{{\bar{h}}^2}+\frac{{\bar{f}}_{RR}\bar{h'}\delta R}{{\bar{h}}} \nonumber \\&\quad =\frac{i q \bar{A_{0}} {\bar{\psi }}}{r {\bar{\xi }}^2}(\delta {\dot{\psi }}-\delta {\dot{\psi }}^*) -\left[ \frac{1}{r}\left( \frac{{\bar{\psi }}}{r}\right) '-\frac{q^2 \bar{A_{0}}^2 {\bar{\psi }}}{r {\bar{\xi }}^2}\right] (\delta \psi +\delta \psi ^*) \nonumber \\&\qquad +\left( \frac{{\bar{\psi }}}{r}\right) '(\delta \psi '+\delta \psi '^*)+\frac{2 q^2 \bar{A_{0}} {\bar{\psi }}^2}{r {\bar{\xi }}^2} \delta A-\frac{2 q^2 \bar{A_{0}}^2 {\bar{\psi }}^2}{r {\bar{\xi }}^3}\delta \xi , \end{aligned}$$
$$\begin{aligned}&\frac{(1+{\bar{f}}_{R})\delta \xi '}{{\bar{\xi }}} \nonumber \\&\quad =-\left[ \frac{r\bar{A_{0}'}^2}{2 {\bar{h}}}+\frac{1}{r}(1+\bar{f_{R}})+\frac{{\bar{f}} r}{2 }-\frac{{\bar{f}}_{R} \bar{R_{0}}r}{2}\right] \frac{\delta N}{{\bar{N}}^2}+\left[ \frac{(1+{\bar{f}}_{R}){\bar{\xi }}'}{{\bar{\xi }}}+ \frac{r\bar{A_{0}'}^2}{{\bar{N}} {\bar{h}}}\right] \frac{\delta \xi }{{\bar{\xi }}} \nonumber \\&\qquad -\left( \frac{1}{r} -\frac{1}{{\bar{N}}r}+\frac{r{\bar{R}}}{2 {\bar{N}}}+\frac{\xi '}{\xi }\right) {\bar{f}}_{RR} \delta R-\frac{r \bar{A_{0}}'}{{\bar{N}}{\bar{h}}} \delta A', \end{aligned}$$
$$\begin{aligned}&\frac{(1+{\bar{f}}_{R})\delta {\dot{N}}}{{\bar{N}}} \nonumber \\&\quad =-\left( \frac{{\bar{\psi }}}{2 r}\right) '(\delta {\dot{\psi }}+\delta \dot{\psi ^*})+\frac{i q \bar{A_{0}} {\bar{\psi }}'}{2r}(\delta \psi -\delta \psi ^*)-\frac{i q \bar{A_{0}} {\bar{\psi }}}{2r}(\delta \psi '-\delta \psi '^*), \end{aligned}$$
$$\begin{aligned}&{\bar{N}} \delta A''+{\bar{N}}\left( \frac{2}{r}-\frac{{\bar{h}}'}{2{\bar{h}}}\right) \delta A'-\frac{q^2 {\bar{\psi }}^2}{r^2}\delta A \nonumber \\&\quad =-\frac{q^2 \bar{A_{0}} {\bar{\psi }}^2}{r^2 {\bar{\xi }}}\delta \xi +\frac{{\bar{N}}\bar{A_{0}}'}{2{\bar{h}}}\delta h'+\frac{1}{2{\bar{h}}}\left[ \frac{q^2\bar{A_{0}} {\bar{\psi }}^2}{r^2}-\frac{{\bar{N}}\bar{A_{0}'} \bar{h'}}{{\bar{h}}}\right] \delta h\nonumber \\&\qquad +\frac{i q {\bar{\psi }}}{2r^2}(\delta {\dot{\psi }}-\delta \dot{\psi ^*})+\frac{q^2 \bar{A_{0}} {\bar{\psi }}}{r^2}(\delta \psi +\delta \psi ^*) \end{aligned}$$
$$\begin{aligned}&\frac{\delta \dot{ A'}}{\sqrt{{\bar{h}}}}-\frac{\bar{A_{0}}'\delta {\dot{h}}}{2 {\bar{h}}\sqrt{{\bar{h}}}} =\frac{i q {\bar{\psi }} {\bar{\xi }}}{2 r^2}(\delta {\psi '}-\delta {\psi '^*})-\frac{i q {\bar{\xi }} {\bar{\psi }}'}{2r^2}(\delta \psi -\delta \psi ^*), \end{aligned}$$
$$\begin{aligned}&-\delta \ddot{\psi }+{\bar{\xi }}^2 \delta \psi ''+2iq \bar{A_{0}} \delta {\dot{\psi }}+ {\bar{\xi }} {\bar{\xi }}' \delta \psi '+\left( q^2 \bar{A_{0}}^2-\frac{{\bar{\xi }}{\bar{\xi }}'}{r}\right) \delta \psi \nonumber \\&\qquad -\frac{iq \bar{A_{0}} {\bar{\psi }}}{{\bar{\xi }}} \delta {\dot{\xi }}+\left( {\bar{\xi }} {\bar{\psi }}'-\frac{{\bar{\xi }} {\bar{\psi }}}{r}\right) \delta \xi '+iq {\bar{\psi }} \delta {\dot{A}}\nonumber \\&\qquad +\left( 2 {\bar{\xi }} {\bar{\psi }}''+{\bar{\xi }}'{\bar{\psi }}'-\frac{{\bar{\psi }} {\bar{\xi }}'}{r}\right) \delta \xi +2 q^2 {\bar{\psi }}\bar{A_{0}} \delta A=0. \end{aligned}$$

The perturbed scalar field is a complex quantity, written as \(\delta \psi =\delta u+i \delta {\dot{w}}\). For the real part, we have

$$\begin{aligned}&-\delta \ddot{u}+{\bar{\xi }}^2\delta u''-2q \bar{A_{0}}\delta \ddot{w}+{\bar{\xi }}{\bar{\xi }}'\delta u'+\left( q^2\bar{A_{0}}^2-\frac{{\bar{\xi }}{\bar{\xi }}'}{r}\right) \delta u \nonumber \\&\quad +\left( {\bar{\xi }}{\bar{\psi }}'-\frac{{\bar{\xi }} {\bar{\psi }}}{r}\right) \delta \xi '+ \left( 2{\bar{\xi }} {\bar{\psi }}''+{\bar{\xi }}'{\bar{\psi }}'-\frac{{\bar{\psi }} {\bar{\xi }}'}{r}\right) \nonumber \\&\quad \times \delta \xi +2q^2{\bar{\psi }}\bar{A_{0}} \delta A=0, \end{aligned}$$

and the imaginary part takes on the form

$$\begin{aligned}&-\delta \dddot{w}+{\bar{\xi }}^2 \delta {\dot{w}}''+2q \bar{A_{0}} \delta {\dot{u}}+ {\bar{\xi }} {\bar{\xi }}' \delta {\dot{w}}'+\left( q^2 \bar{A_{0}}^2-\frac{{\bar{\xi }}{\bar{\xi }}'}{r} \right) \delta {\dot{w}} \nonumber \\&\quad -\frac{q \bar{A_{0}} {\bar{\psi }}}{{\bar{\xi }}} \delta {\dot{\xi }}+q {\bar{\psi }} \delta {\dot{A}}=0. \end{aligned}$$

Integration with respect to time of equations (5153) yields

$$\begin{aligned}&(1+\bar{f_{R}})\frac{\delta N}{{\bar{N}}}=-\left( \frac{{\bar{\psi }}}{r}\right) '\delta u-\frac{ q \bar{A_{0}} {\bar{\psi }}'}{r}\delta w+\frac{q \bar{A_{0}} {\bar{\psi }}}{r}\delta w'+\delta F(r) , \end{aligned}$$
$$\begin{aligned}&\frac{\delta h}{{\bar{h}} \sqrt{{\bar{h}}}}= \frac{2\delta A'}{\bar{A_{0}}'\sqrt{{\bar{h}}}}+\frac{ 2 q {\bar{\psi }} {\bar{\xi }}}{r^2 \bar{A_{0}}'}\delta w'-\frac{ 2 q {\bar{\xi }} {\bar{\psi }}'}{\bar{A_{0}}' r^2}\delta w+\delta \textit{g(r)}, \end{aligned}$$

where \(\delta F(r) \) and \(\delta g(r) \) are arbitrary functions of the radial coordinate. Integration of equation (56) now yields

$$\begin{aligned}&\delta \ddot{w}-{\bar{\xi }}^2 \delta w''-2q \bar{A_{0}} \delta u-{\bar{\xi }} {\bar{\xi }}' \delta w'-\left( q^2 \bar{A_{0}}^2-\frac{{\bar{\xi }}{\bar{\xi }}'}{r}\right) \delta w \nonumber \\&\quad +\frac{q \bar{A_{0}} {\bar{\psi }}}{{\bar{\xi }}} \delta \xi -q {\bar{\psi }} \delta A+\delta \textit{H(r)}=0, \end{aligned}$$

where \(\delta \textit{H(r)}\) is an arbitrary function of the radial coordinate. If an arbitrary function of r is added to \(\delta w\), due to the form of \(\delta \psi \), it does not change which gives us the freedom to set \(\delta \textit{H(r)}=0\).

A first-order differential equation is constructed from (48) and (52), using equations (5759)

$$\begin{aligned}&\delta F(r) '+\left( \frac{{\bar{\xi }}'}{{\bar{\xi }}}+\frac{1}{r}\right) \delta F(r) +{\bar{f}}_{RR}\left( \frac{1}{r}-\frac{1}{{\bar{N}}r}+\frac{r{\bar{R}}}{2 {\bar{N}}}+\frac{{\bar{N}}'}{{\bar{N}}}\right) \delta R \nonumber \\&\quad =\frac{r \bar{A_{0}}\bar{A_{0}}'{\bar{N}}}{{\bar{\xi }}^2}(\sqrt{{\bar{h}}} \delta g(r) )' +\frac{r \bar{A'_{0}}^2}{2{\bar{\xi }}}\delta g(r) +\frac{q^2\bar{A_{0}}^2{\bar{\psi }}^2 \sqrt{{\bar{h}}}}{2r{\bar{\xi }}^2}\delta g(r) . \end{aligned}$$

Another first-order differential equation is obtained by plugging (48) and (52) in (57)

$$\begin{aligned}&\delta F(r) '+\left( \frac{{\bar{\xi }}'}{{\bar{\xi }}} +\frac{1}{r}\right) \delta F(r) +{\bar{f}}_{RR}\left( \frac{1}{r}- \frac{1}{{\bar{N}}r}+\frac{r{\bar{R}}}{2 {\bar{N}}}+\frac{{\bar{N}}'}{{\bar{N}}}\right) \delta R \nonumber \\&\quad =\frac{r \bar{A'_{0}}^2}{2{\bar{\xi }}}\delta g(r) . \end{aligned}$$

Substitution of (57) and (58) in (59) then gives

$$\begin{aligned}&\delta \ddot{w}-{\bar{\xi }}^2\delta w''+\left[ \frac{q^2 \bar{A_{0}} {\bar{\psi }}^2}{r^2 \bar{A_{0}}'}\left( \frac{r \bar{A_{0}}' \bar{A_{0}}}{1+{\bar{f}}_{R}}+ {\bar{N}}{\bar{h}}\right) -{\bar{\xi }} {\bar{\xi }}'\right] \delta w' \nonumber \\&\qquad -\left[ \frac{q^2 \bar{A_{0}} {\bar{\psi }} {\bar{\psi }}'}{r^2 \bar{A_{0}}'} \left( \frac{ r \bar{A_{0}} \bar{A_{0}}'}{1+{\bar{f}}_{R}}+{\bar{N}}{\bar{h}}\right) +q^2 \bar{A_{0}}^2 -\frac{{\bar{\xi }} {\bar{\xi }}'}{r}\right] \nonumber \\&\qquad \times \delta w -q \bar{A_{0}}\left( 2+\frac{{\bar{\psi }} \left( \frac{{\bar{\psi }}}{r}\right) '}{1+{\bar{f}}_{R}}\right) \delta u-q {\bar{\psi }} \delta A+\frac{q \bar{A_{0}} {\bar{\psi }}}{\bar{A_{0}}'} \delta A'\nonumber \\&\qquad +\frac{q \bar{A_{0}}{\bar{\psi }}\delta F(r) }{1+\bar{f_{R}}}+\frac{q \bar{A_{0}}\sqrt{{\bar{h}}}{\bar{\psi }}\delta g(r) }{2}\nonumber \\&\quad =0, \end{aligned}$$

Let us now substitute equations (50575961) in (55) and obtain

$$\begin{aligned}&\delta \ddot{u}-{\bar{\xi }}^2 \delta u''-{\bar{\xi }} {\bar{\xi }}'\delta u'\nonumber \\&\quad +\left[ 3 q^2 \bar{A_{0}}^2+\frac{{\bar{\xi }} {\bar{\xi }}'}{r}+\frac{ {\bar{N}}\left( \frac{{\bar{\psi }}}{r}\right) '^2 }{1+{\bar{f}}_{R}}\left( \frac{r^2 \bar{A_{0}}'^2}{2 (1+{\bar{f}}_{R})}-\frac{r^2 {\bar{h}} {\bar{f}}}{2( 1+{\bar{f}}_{R})}+\frac{r^2 {\bar{h}} {\bar{f}}_{R} \bar{R_{0}}}{2( 1+{\bar{f}}_{R})}-{\bar{h}}\right) \right] \nonumber \\&\quad \times \delta u+2 q \bar{A_{0}} {\bar{\xi }}^2 \delta w'' +q {\bar{N}}\bar{A_{0}} \nonumber \\&\qquad \left[ 2 \sqrt{{\bar{h}}}{\bar{\xi }}'+\frac{{\bar{\psi }} \left( \frac{{\bar{\psi }}}{r}\right) '}{1+{\bar{f}}_{R}} \left( \frac{{\bar{h}}}{r}-\frac{{\bar{N}}{\bar{h}} \bar{A_{0}}' }{\bar{A_{0}}}-\frac{r \bar{A_{0}}'^2}{2(1+{\bar{f}}_{R})}-\frac{{\bar{h}}{\bar{f}}_{R} \bar{R_{0}} r}{2 (1+{\bar{f}}_{R})}+ \frac{{\bar{h}}{\bar{f}} r}{2 (1+{\bar{f}}_{R})}\right) \right] \delta w' \nonumber \\&\qquad +q \bar{A_{0}}\left[ 2 q^2 \bar{A_{0}}^2-\frac{2 {\bar{\xi }} {\bar{\xi }}'}{r}+\frac{{\bar{\xi }} {\bar{\psi }}' \left( \frac{{\bar{\psi }}}{r}\right) '}{1+{\bar{f}}_{R}}\left( \frac{{\bar{\xi }} \bar{A_{0}}'}{\bar{A_{0}}}-{\bar{\xi }}'-\frac{{\bar{\xi }}}{r }\right) \right] \delta w- {\bar{\xi }}^2 r \left( \frac{{\bar{\psi }}}{r}\right) ' \nonumber \\&\quad \times \frac{\delta \textit{F(r)}'}{1+{\bar{f}}_{R}}+ \frac{{\bar{f}}_{RR} {\bar{h}}'}{2\left( 1+{\bar{f}}_{R}\right) {\bar{h}}}\delta R=0. \end{aligned}$$

Using equations (495859) then results in

$$\begin{aligned}&\frac{q {\bar{\psi }}}{r}\left( \frac{\bar{A_{0}}}{1+{\bar{f}}_{R}}+\frac{{\bar{N}}{\bar{h}}}{r \bar{A_{0}}'}\right) \delta w''+ q \bar{A_{0}} {\bar{\psi }} \left[ -\frac{q^2 {\bar{h}} {\bar{\psi }}^2}{r^4 \bar{A_{0}}'^2}+\frac{{\bar{\xi }}'}{(1+{\bar{f}}_{R}) {\bar{\xi }} r}+\frac{\sqrt{{\bar{h}}}\bar{\xi '}}{r^2 \bar{A_{0}} \bar{A_{0}}'}\right] \delta w' \nonumber \\&\quad +\frac{q \bar{A_{0}} {\bar{\psi }}}{r^2}\left[ \frac{r q^2 \bar{A_{0}}^2}{(1+{\bar{f}}_{R}) {\bar{\xi }}^2} +\frac{q^2 \bar{A_{0}}}{{\bar{N}} \bar{A_{0}}'}-\frac{{\bar{\xi }}'}{(1+{\bar{f}}_{R}) {\bar{\xi }}}-\frac{\sqrt{{\bar{h}}}{\bar{\xi }}'}{r \bar{A_{0}} \bar{A_{0}}' }+\frac{q^2 {\bar{h}} {\bar{\psi }}{\bar{\psi }}'}{r^2 \bar{A_{0}}'^2}\right] \delta w\nonumber \\&\quad -\frac{\left( \frac{{\bar{\psi }}}{r} \right) '}{1+{\bar{f}}_{R}}\delta u'-\left[ \frac{\left( \frac{{\bar{\psi }}}{r} \right) '}{1+{\bar{f}}_{R}}\left( \frac{1}{r}+ \frac{{\bar{\xi }}'}{{\bar{\xi }}}\right) + \frac{\left( \frac{{\bar{\psi }}}{r}\right) ''}{1+{\bar{f}}_{R}}\right] \delta u\nonumber \\&\quad +\frac{\delta A''}{\bar{A_{0}}'} -\frac{\bar{A_{0}}''}{\bar{A_{0}}'^2}\delta A'+\frac{{\bar{f}}_{RR}{\bar{h}}'}{2\left( 1+{\bar{f}}_{R}\right) {\bar{h}}}\delta R+\frac{\left( \sqrt{{\bar{h}}}\delta \textit{g(r)}\right) '}{2}=0. \end{aligned}$$

Since ingoing boundary conditions (40) must exist for all perturbations, including perturbation of metric variables (\(\delta N\) and \(\delta h\)) [10], equations (57) and (58) are needed to satisfy such conditions, leading to \(\delta \textit{F(r)}=0\) and \(\delta \textit{g(r)}=0\) at \(r=r_{h}\). Therefore, \(\delta \textit{F(r)}\), \(\delta \textit{g(r)}\), \(\delta \textit{F(r)}'\) and \(\delta \textit{g(r)}'\) are removed from perturbation equations and \(\delta R\) at \(r=r_{h}\) must be zero on account of equations (6061).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Honardoost, M. & Sepangi, H.R. Superradiant instability and asymptotically AdS hairy black holes in F(R)-charged scalar field theory. Gen Relativ Gravit 52, 53 (2020).

Download citation