Skip to main content
Log in

Higher-order geodesic deviations and orbital precession in a Kerr–Newman space–time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A novel approximation method in studying the perihelion precession and planetary orbits in general relativity is to use geodesic deviation equations of first and high-orders, proposed by Kerner et al. Using higher-order geodesic deviation approach, we generalize the calculation of orbital precession and the elliptical trajectory of neutral test particles to Kerr–Newman space–times. One of the advantage of this method is that, for small eccentricities, one obtains trajectories of planets without using Newtonian and post-Newtonian approximations for arbitrary values of quantity \({G M}/{R c^2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einstein, A.: Ann. Phys. Lpz 49, 769 (1916)

    Article  ADS  Google Scholar 

  2. Einstein, A.: Jahrb. Radioakt. Elektron. 4, 411 (1907)

    Google Scholar 

  3. Lemaitre, G.: Mon. Not. R. Astronom. Soc. 91, 490 (1931)

    Article  ADS  Google Scholar 

  4. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R., et al.: (The Supernova Cosmology Project). Astrophys. J 517, 565 (1999)

  5. Abbott, B.P., et al.: (LIGO Scientific Collaboration and Virgo Collaboration). Phys. Rev. Lett 116, 061102 (2016)

  6. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  7. Straumann, N.: General Relativity. Springer, New York (2013)

    Book  Google Scholar 

  8. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  9. Kerner, R., van Holten, J.W., Colistete, R.: Class. Quantum Gravity 18, 4725 (2001)

    Article  ADS  Google Scholar 

  10. Kerner, R., Martin, J., Mignemi, S., van Holten, J.W.: Phys. Rev. D 63, 027502 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kerner, R.: Proc. Erevan Conf: Classical and Quantum Integrable Systems (Dubna, JINR Publications) (1998)

  12. Colistete Jr., R., Leygnac, C., Kerner, R.: Class. Quantum Gravity 19, 4573 (2002)

    Article  ADS  Google Scholar 

  13. van Holten, J.W.: Int. J. Mod. Phys. A 17, 2764 (2002)

    Article  ADS  Google Scholar 

  14. Balakin, A., van Holten, J.W., Kerner, R.: Class. Quantum Gravity 17, 5009 (2000)

    Article  ADS  Google Scholar 

  15. Cindra, J.L.: Class. Quantum Gravity 6, 857 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. Calvani, M., Turolla, R.: J. Phys. A: Math. Gen. 14, 1931 (1981)

    Article  ADS  Google Scholar 

  17. Stuchlík, Z., Hledík, S.: Class. Quantum Gravity 17, 4541 (2000)

    Article  ADS  Google Scholar 

  18. Pugliese, D., Quevedo, H., Ruffini, R.: Phys. Rev. D 88, 024042 (2013)

    Article  ADS  Google Scholar 

  19. Dadhich, N., Kale, P.P.: J. Math. Phys. 18, 1727 (1977)

    Article  ADS  Google Scholar 

  20. Balek, V., Bicak, J., Stuchlik, Z.: Bull. Astronom. Inst. Czechoslov. 40, 133 (1989)

    ADS  Google Scholar 

  21. Lindberg, A., Steven, S.: J. Geom. Phys. 132, 114 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Shchigolev, V.K.: Univers. J. Comput. Math. 3, 45 (2015)

    Google Scholar 

  23. Shchigolev, V.K.: Int. J. Phys. Res. 4, 52 (2016)

    Article  Google Scholar 

  24. Fokas, A.S., Vayenas, C.G., Grigoriou, D.: arXiv:1509.03326

  25. Pejic, M.: http://math.berkeley.edu/mpejic/pdfdocuments/PerihelionPrecession.pdf

  26. Kraniotis, G.V., Whitehouse, S.B.: Class. Quantum Gravity 20, 4817 (2003)

    Article  ADS  Google Scholar 

  27. Ruggiero, M.L.: Int. J. Mod. Phys. D 23, 1450049 (2014)

    Article  ADS  Google Scholar 

  28. Hu, Y.P., Zhang, H., Hou, J.-P., Tang, L.-Z.: Adv. High Energy Phys. 2014, 604321 (2014)

    Google Scholar 

  29. Mak, M.K., Leung, C.S., Harko, T.: Adv. High Energy Phys. 2018, 7093592 (2018)

    Article  Google Scholar 

  30. Heydari-Fard, M., Fakhry, S., Hasani, S.N.: Adv. High Energy Phys. 2019, 1879568 (2019)

    Article  Google Scholar 

  31. Hodgkinson, D.E.: Gen. Relativ. Gravit. 3, 351 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bazanski, S.L.: Ann. Inst. H. Poincare A 27, 115 (1977)

    ADS  Google Scholar 

  33. Bazanski, S.L.: Ann. Inst. H. Poincare A 27, 145 (1977)

    ADS  Google Scholar 

  34. Vines, J.: Gen. Relativ. Gravit. 47, 59 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Synge, J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1960)

    MATH  Google Scholar 

  36. DeWitt, B.S., Brehme, R.W.: Ann. Phys. 9, 220 (1960)

    Article  ADS  Google Scholar 

  37. Poisson, E., Pound, A., Vega, I.: Living Rev. Relativ. 14, 7 (2011)

    Article  ADS  Google Scholar 

  38. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1970)

    Google Scholar 

  39. Heydari-Fard, M., Hasani, S.N.: Int. J. Mod. Phy. D 27, 1850042 (2018)

    Article  ADS  Google Scholar 

  40. Baskaran, D., Grishchuk, L.P.: Class. Quantum Gravity 21, 4041 (2004)

    Article  ADS  Google Scholar 

  41. Islam, J.N.: Rotating Fields in General Relativity. Camberidge University Press, Camberidge (1985)

    Book  Google Scholar 

  42. Kepler, J.: Astronomia Nova (1609) (The New Astronomy transl. w. H. Donahue (Cambridge, Cambridge University Press, 1992))

  43. Chen-Yu, L., Da-Shin, L., Chi-Yong, L.: Class. Quantum Gravity 34, 235008 (2017)

    Article  ADS  Google Scholar 

  44. Inverno, R.D.: Introducing Einstein’s Relativity. Oxford University Press, New York (1992)

    Google Scholar 

  45. Jiang, C., Lin, W.: Eur. Phys. J. Plus 129, 200 (2014)

    Article  Google Scholar 

  46. Jiang, C., Lin, W.: Phys. Rev. D 97, 024045 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  47. Avalos-Vargas, A., Ares de Parga, G.: Eur. Phys. J. Plus 127, 155 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Richard Kerner for helpful discussions and Mohsen Khodadi for a careful reading of the manuscript and useful suggestions. We also thank the anonymous referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Sepangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients of \(\delta ^2x^{\mu }\) in the second-order geodesic deviation equations are

$$\begin{aligned} \delta ^{2}t _{0}= & {} 0,\quad \delta ^{2}t _{2\theta }=\frac{(n_{0}^{\theta })^{2}}{\sqrt{f_{3}}}\frac{a^{2}}{R}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}} \left[ 1+\frac{Q^{2}}{2R^{2}}\left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right] , \end{aligned}$$
(57)
$$\begin{aligned} \delta ^{2}t _{2r}= & {} \frac{(n_{0}^{r})^{2}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}}{Rf_{2}^2f_{6}^{\frac{3}{2}}} \Bigg \lbrace \left[ \left( 2-\frac{15M}{R}+\frac{14M^{2}}{R^{2}} +\frac{10Q^{2}}{R^{2}}-\frac{17MQ^{2}}{R^{3}}+\frac{4Q^{4}}{R^{4}}\right) \right. \nonumber \\&+\,\left. \frac{1}{2}\left( \frac{3Q^{2}}{R^{2}}-\frac{2Q^{4}}{R^{4}} -\frac{Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\nonumber \right. \\&\left. -\frac{1}{2}\left( \frac{Q^{4}}{R^{4}}-\frac{2Q^{6}}{R^{6}}+\frac{Q^{8}}{R^{8}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] \nonumber \\&+\,\frac{a}{R}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}\left[ \left( 11+\frac{34M}{R}-\frac{64M^{2}}{R^{2}} +\frac{15Q^{2}}{R^{2}}+\frac{38MQ^{2}}{R^{3}}-\frac{26Q^{4}}{R^{4}}\right) \right. \nonumber \\&\left. -\frac{1}{2}\left( \frac{31Q^{2}}{R^{2}}-\frac{64Q^{4}}{R^{4}}+\frac{33Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\nonumber \right. \\&\left. -\frac{1}{2}\left( \frac{5Q^{4}}{R^{4}}-\frac{10Q^{6}}{R^{6}}+\frac{5Q^{8}}{R^{8}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] \nonumber \\&-\,\frac{a^{2}}{R^{2}}\left[ \left( 3+\frac{84M}{R}-\frac{126M^{2}}{R^{2}}-\frac{53Q^{2}}{R^{2}}+\frac{137MQ^{2}}{R^{3}}-\frac{36Q^{4}}{R^{4}}\right) \right. \nonumber \\&\left. -\frac{1}{2}\left( \frac{15Q^{2}}{R^{2}}-\frac{10Q^{4}}{R^{4}}-\frac{Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\nonumber \right. \\&\left. +\frac{1}{2} \left( \frac{3Q^{4}}{R^{4}}-\frac{4Q^{6}}{R^{6}}+\frac{Q^{8}}{R^{8}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] \nonumber \\&+\,\frac{a^{3}}{R^{3}}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}\left[ \left( 56-\frac{66M}{R}+\frac{35Q^{2}}{R^{2}}\right) -\left( \frac{16Q^{2}}{R^{2}}-\frac{15Q^{4}}{R^{4}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right. \nonumber \\&-\,4\left. \left( \frac{Q^{4}}{R^{4}}-\frac{Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] -\frac{a^{4}}{R^{4}}\left[ \left( 12+\frac{21M}{R}-\frac{19Q^{2}}{R^{2}}\right) \right. \nonumber \\&-\,\left. \frac{1}{2}\left( \frac{21Q^{2}}{R^{2}}-\frac{8Q^{4}}{R^{4}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1} +\frac{1}{2}\left( \frac{3Q^{4}}{R^{4}}-\frac{2Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] \nonumber \\&+\,\frac{a^5}{R^5}\sqrt{\frac{M}{R}-\frac{Q^2}{R^2}}\left[ 29-\frac{17Q^2}{2R^2}\left( \frac{M}{R}-\frac{Q^2}{R^2}\right) ^{-1} -\frac{3Q^4}{2R^4}\left( \frac{M}{R}-\frac{Q^2}{R^2}\right) ^{-2}\right] \nonumber \\&-\,\frac{a^6}{R^6}\left[ 27-\frac{9Q^2}{2R^2}\left( \frac{M}{R}-\frac{Q^2}{R^2}\right) ^{-1} +\frac{Q^4}{2R^4}\left( \frac{M}{R}-\frac{Q^2}{R^2}\right) ^{-2}\right] \Bigg \rbrace \end{aligned}$$
(58)
$$\begin{aligned} \delta ^{2}r_{0}= & {} 0,\quad \delta ^{2}r_{2r}=\frac{-(n_{0}^{r})^{2}}{Rf_{6}} \Bigg \lbrace \left[ \left( 1-\frac{7M}{R}+\frac{5Q^{2}}{R^{2}}\right) +\left( \frac{Q^{2}}{R^{2}}-\frac{Q^{4}}{R^{4}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right] \nonumber \\&+\,\frac{10a}{R}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}\left[ 1-\frac{Q^{2}}{5R^{2}}\left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right] \nonumber \\&-\,\frac{4a^{2}}{R^{2}}\left[ 1-\frac{Q^{2}}{2R^{2}}\left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right] \Bigg \rbrace , \end{aligned}$$
(59)
$$\begin{aligned} \delta ^{2}\theta _{-}= & {} -\delta ^{2}\theta _{+}=\frac{2(n_{0}^{r})(n_{0}^{\theta })}{R}\frac{\sqrt{f_3}}{\sqrt{f_6}} \end{aligned}$$
(60)
$$\begin{aligned} \delta ^{2}\varphi _{0}= & {} 0,\quad \delta ^{2}\varphi _{2\theta }=\frac{(n_{0}^{\theta })^{2}}{\sqrt{f_{3}}} \left[ 1-\frac{2a}{R}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}} \left( 1+\frac{Q^{2}}{2R^{2}} \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right) \right] , \end{aligned}$$
(61)
$$\begin{aligned} \delta ^{2}\varphi _{2r}= & {} \frac{-2(n_{0}^{r})^{2}}{R^{2}f^{2}_{2}f_{6}^{\frac{3}{2}}}\Bigg \lbrace \left[ \left( 5-\frac{32M}{R}\right) \left( 1-\frac{2M}{R}\right) ^{2}-\frac{9Q^{2}}{R^{2}} +\frac{140MQ^{2}}{R^{3}}-\frac{204M^{2}Q^{2}}{R^{4}}\right. \nonumber \\&-\,\frac{63Q^{4}}{R^{4}}+\frac{128MQ^{4}}{R^{5}} \nonumber \\&-\,\left. \frac{19Q^{6}}{R^{6}} -5\left( \frac{Q^{2}}{R^{2}}-\frac{3Q^{4}}{R^{4}}+\frac{3Q^{6}}{R^{6}}-\frac{Q^{8}}{R^{8}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right] \nonumber \\&-\,\frac{2a}{R}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}\left[ \left( 26-\frac{119M}{R}+\frac{126M^{2}}{R^{2}} +\frac{66Q^{2}}{R^{2}}-\frac{137MQ^{2}}{R^{3}}+\frac{36Q^{4}}{R^{4}}\right) \right. \nonumber \\&+\,\frac{1}{2}\left( \frac{3Q^{2}}{R^{2}}-\frac{2Q^{4}}{R^{4}}-\frac{Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\nonumber \\&\left. -\frac{1}{2}\left( \frac{Q^{4}}{R^{4}}-\frac{2Q^{6}}{R^{6}}+\frac{Q^{8}}{R^{8}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] \nonumber \\&+\,\frac{2a^{2}}{R^{2}}\left[ \left( 8-\frac{61M}{R}+\frac{66M^{2}}{R^{2}}-\frac{101MQ^{2}}{R^{3}}+\frac{20Q^{4}}{R^{4}}+\frac{68Q^{2}}{R^{2}}\right) \nonumber \right. \\&\left. -4\left( \frac{Q^{2}}{R^{2}}-\frac{2Q^{4}}{R^{4}}+\frac{Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right] \nonumber \\&+\,\frac{2a^{3}}{R^{3}}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}\left[ \left( 5+\frac{21M}{R}-\frac{19Q^{2}}{R^{2}}\right) -\left( \frac{6Q^{2}}{R^{2}}-\frac{4Q^{4}}{R^{4}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right. \nonumber \\&\left. +\left( \frac{Q^{4}}{R^{4}}-\frac{Q^{6}}{R^{6}}\right) \left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] +\frac{a^{4}}{R^{4}}\left[ \left( 5-\frac{58M}{R}+\frac{75Q^{2}}{R^{2}}\right) \right. \nonumber \\&-\,\left. \left( \frac{Q^2}{R^2}-\frac{Q^4}{R^4}\right) \left( \frac{M}{R}-\frac{Q^2}{R^2}\right) ^{-1}\right] +\frac{a^{5}}{R^{5}}\sqrt{\frac{M}{R}-\frac{Q^{2}}{R^{2}}}\left[ 14-\frac{9Q^{2}}{R^{2}}\left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-1}\right. \nonumber \\&+\,\left. \frac{Q^{4}}{R^{4}}\left( \frac{M}{R}-\frac{Q^{2}}{R^{2}}\right) ^{-2}\right] \Bigg \rbrace . \end{aligned}$$
(62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari-Fard, M., Heydari-Fard, M. & Sepangi, H.R. Higher-order geodesic deviations and orbital precession in a Kerr–Newman space–time. Gen Relativ Gravit 51, 77 (2019). https://doi.org/10.1007/s10714-019-2557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2557-7

Keywords

Navigation