Skip to main content
Log in

Fermi field and Dirac oscillator in a Som–Raychaudhuri space-time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the relativistic dynamics of a Dirac field in the Som–Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som–Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov–Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som–Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sagnac, M.G.: C. R. Acad. Sci. (Paris) 157, 708 (1913)

    Google Scholar 

  2. Sakurai, J.J.: Phys. Rev. D 21, 2993 (1980)

    Article  ADS  Google Scholar 

  3. Anandan, J.: Phys. Rev. D 15, 1448 (1977)

    Article  ADS  Google Scholar 

  4. Iyer, B.R.: Phys. Rev. D 26, 1900 (1982)

    Article  ADS  Google Scholar 

  5. Post, E.J.: Rev. Mod. Phys. 39, 475 (1967)

    Article  ADS  Google Scholar 

  6. Anandan, J.: Phys. Rev. D 24, 338 (1981)

    Article  ADS  Google Scholar 

  7. Cui, S.-M., Xu, H.-H.: Phys. Rev. A 44, 3343 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cui, S.-M.: Phys. Rev. A 45, 5255 (1992)

    Article  ADS  Google Scholar 

  9. Page, L.A.: Phys. Rev. Lett. 35, 543 (1975)

    Article  ADS  Google Scholar 

  10. Werner, S.A., Staudenmann, J.-L., Colella, R.: Phys. Rev. Lett. 42, 1103 (1979)

    Article  ADS  Google Scholar 

  11. Mashhoon, B.: Phys. Rev. Lett. 61, 2639 (1988)

    Article  ADS  Google Scholar 

  12. Hehl, F.W., Ni, W.-T.: Phys. Rev. D 42, 2045 (1990)

    Article  ADS  Google Scholar 

  13. Bakke, K., Furtado, C.: Phys. Rev. D 80, 024033 (2009)

    Article  ADS  Google Scholar 

  14. Aharonov, Y., Carmi, G.: Found. Phys. 3, 493 (1973)

    Article  ADS  Google Scholar 

  15. Fischer, U.R., Schopohl, N.: Europhys. Lett. 54, 502 (2001)

    Article  ADS  Google Scholar 

  16. Li-Hua, Lu, Li, You-Quan: Phys. Rev. A 76, 023410 (2007)

    Article  ADS  Google Scholar 

  17. Shen, J.-Q., He, S.-L.: Phys. Rev. B 68, 195421 (2003)

    Article  ADS  Google Scholar 

  18. Shen, J.Q., He, S., Zhuang, F.: Eur. Phys. J. D 33, 35 (2005)

    Article  ADS  Google Scholar 

  19. Ambruş, V.E.: Phys. Lett. B 771, 151 (2017)

    Article  ADS  Google Scholar 

  20. Ambruş, V.E., Winstanley, E.: Phys. Lett. B 734, 296 (2014)

    Article  ADS  Google Scholar 

  21. Ambruş, V.E., Winstanley, E.: AIP Conf. Proc. 1695, 020011 (2015)

    Article  Google Scholar 

  22. Kent, C., Winstanley, E.: Phys. Lett. B 740, 188 (2015)

    Article  ADS  Google Scholar 

  23. Merlin, R.: Phys. Lett. A 181, 421 (1993)

    Article  ADS  Google Scholar 

  24. Vignale, G., Mashhoon, B.: Phys. Lett. A 197, 444 (1995)

    Article  ADS  Google Scholar 

  25. Bakke, K.: Phys. Lett. A 374, 3143 (2010)

    Article  ADS  Google Scholar 

  26. Bakke, K.: Phys. Lett. A 374, 4642 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dantas, L., Furtado, C., Silva Metto, A.L.: Phys. Lett. A 379, 11 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tuai, C.H., Neilson, D.: Phys. Rev. A 37, 619 (1988)

    Article  ADS  Google Scholar 

  29. Mota, H.F., Bakke, K.: Phys. Rev. D 89, 027702 (2014)

    Article  ADS  Google Scholar 

  30. Castro, L.B.: Eur. Phys. J. C 76, 61 (2016)

    Article  ADS  Google Scholar 

  31. Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)

    Article  ADS  Google Scholar 

  32. Gürses, M., Karasu, A., Sarioğlu, Ö.: Class. Quant. Grav. 22, 1527 (2005)

    Article  ADS  Google Scholar 

  33. Gürses, M., Sarioğlu, Ö.: Class. Quant. Grav. 22, 4699 (2005)

    Article  ADS  Google Scholar 

  34. Gleiser, R.J., Gürses, M., Karasu, A., Sarioğlu, Ö.: Class. Quant. Grav. 23, 2653 (2006)

    Article  ADS  Google Scholar 

  35. Rebouças, M.J., Tiomno, J.: Phys. Rev. D 28, 1251 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kanti, P., Vayonakis, C.E.: Phys. Rev. D 60, 103519 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  37. Romano, A.E., Goebel, C.: Gen. Relativ. Grav. 35, 1857 (2003)

    Article  ADS  Google Scholar 

  38. Barrow, J.D., Dabrowski, M.P.: Phys. Rev. D 58, 103502 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hawking, S.: Phys. Rev. D 46, 603 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  40. Rebouças, M., Åman, M., Teixeira, A.F.F.: J. Math. Phys. 27, 1370 (1985)

    Article  ADS  Google Scholar 

  41. Calvão, M.O., Rebouças, M.J., Teixeira, A.F.F., Silva Jr., W.M.: J. Math. Phys. 29, 1127 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gürses, M.: Gen. Relativ. Grav. 41, 31 (2009)

    Article  ADS  Google Scholar 

  43. Jacobson, T., Mattingly, D.: Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  44. Jacobson, T.: Proc. Sci. from quantum to emergent gravity: theory and phenomenology PoS(QG-Ph)020, 18 pp (2007)

  45. Balakin, A.B., Popov, V.A.: J. Cosm. Astropart. Phys. 025, 29 (2017)

    Google Scholar 

  46. Harmark, T., Takayanagi, T.: Nucl. Phys. B 662, 3 (2003)

    Article  ADS  Google Scholar 

  47. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  48. Marchuk, N.G.: Nuovo Cim. 115 B, 11 (2000)

    Google Scholar 

  49. Landau, L.D., Lifschitz, E.M.: Quantum Mechanics. Pergamon, Oxford (1981)

    MATH  Google Scholar 

  50. Marques, G.A., Bezerra, V.B.: Phys. Rev. D 66, 105011 (2002)

    Article  ADS  Google Scholar 

  51. Bausch, R., Schmitz, R., Turski, Ł.A.: Phys. Rev. Lett. 80, 2257 (1998)

    Article  ADS  Google Scholar 

  52. Aurell, E.: J. Phys. A Math. Gen. 32, 571 (1999)

    Article  ADS  Google Scholar 

  53. Kawamura, K.: Zeit. Physik B 29, 101 (1978)

    Article  MathSciNet  Google Scholar 

  54. Furtado, C., Bezerra, V.B., Moraes, F.: Phys. Lett. A 289, 160 (2001)

    Article  ADS  Google Scholar 

  55. Furtado, C., Bezerra, V.B., Moraes, F.: Europhys. Lett. 52, 1 (2000)

    Article  ADS  Google Scholar 

  56. Furtado, C., Moraes, F.: Europhys. Lett. 45, 279 (1999)

    Article  ADS  Google Scholar 

  57. Furtado, C., Cunha, B.G.C.da, Moraes, F., Mello, E.R.Bezerra de, Bezzerra, V.B.: Phys. Lett. A 195, 90 (1994)

    Article  ADS  Google Scholar 

  58. Som, M.M., Raychaudhuri, A.K.: Proc. R. Soc. A 304, 81 (1968)

    Article  ADS  Google Scholar 

  59. Shaikh, A.A., Kundu, H.: J. Geom. (2016). https://doi.org/10.1007/s00022-016-0355-x

    Google Scholar 

  60. Moshinsky, M., Szczepaniak, A.: J. Phys. A Math. Gen. 22, L817 (1989)

    Article  ADS  Google Scholar 

  61. Itô, D., Mori, K., Carriere, E.: Nuov. Cim. A 51, 1119 (1967)

    Article  ADS  Google Scholar 

  62. Cook, P.A.: Lett. Nuovo Cimento 1, 419 (1971)

    Article  Google Scholar 

  63. Quesne, C.: J. Phys. A Math. Theor. 50, 081001 (2017)

    Article  ADS  Google Scholar 

  64. Bakke, K.: Eur. Phys. J. Plus 127, 82 (2012)

    Article  ADS  Google Scholar 

  65. Bakke, K., Furtado, C.: Ann. Phys. 336, 489 (2013)

    Article  ADS  Google Scholar 

  66. Bakke, K.: Gen. Relativ. Grav. 45, 1847 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  67. Wang, Z., Long, Z.-W., Wu, M.-L.: Eur. Phys. J. Plus 130, 36 (2015)

    Article  Google Scholar 

  68. Carvalho, J., de Carvalho, A.M.M., Furtado, C.: Eur. Phys. J. C 74, 2935 (2014)

    Article  ADS  Google Scholar 

  69. Figueiredo, B.D.B., Soares, I.Damião, Tiomno, J.: Class. Quant. Grav. 9, 1593 (1992)

    Article  ADS  Google Scholar 

  70. Garcia, G.Q., de Oliveira, J.R.S., Bakke, K., Furtado, C.: Eur. Phys. J. Plus 132, 123 (2017)

    Article  Google Scholar 

  71. Clifton, T., Barrow, J.: Phys. Rev. D 72, 123003 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  72. Cotaescu, I.I.: J. Phys. A Math. Gen. 33, 9177 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  73. Das, S., Gegenberg, J.: Gen. Relativ. Gravit. 40, 2115 (2008)

    Article  ADS  Google Scholar 

  74. Bakke, K., Furtado, C.: Phys. Lett. A 376, 1269 (2012)

    Article  ADS  Google Scholar 

  75. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel (1988)

    Book  MATH  Google Scholar 

  76. Tezcan, C., Sever, R.: Int. J. Theor. Phys. 48, 337 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Marc de Montigny acknowledges the Natural Sciences and Engineering Research Council (NSERC) of Canada for partial financial support (Grant Number RGPIN-2016-04309). We thank the referees for a thorough reading of our manuscript and for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc de Montigny.

Brief review of the Nikiforov–Uvarov (NU) method

Brief review of the Nikiforov–Uvarov (NU) method

The Nikiforov–Uvarov method is helpful in order to find eigenvalues and eigenfunctions of the Schrödinger equation, as well as other second-order differential equations of physical interest. More details can be found in Refs. [75, 76]. According to this method, the eigenfunctions and eigenvalues of a second-order differential equation with potential

$$\begin{aligned} \frac{d^2\psi (s)}{ds^2}+\frac{\alpha _1-\alpha _2s}{s(1-\alpha _3s)}\frac{d\psi (s)}{ds}+\left[ \frac{-\beta _1s^2+\beta _2s-\beta _3}{s^2(1-\alpha _3s)^2}\right] \psi (s)=0 \end{aligned}$$
(A.1)

are given by

$$\begin{aligned} \psi \left( s \right) = {s^{{\alpha _{12}}}}{\left( {1 - {\alpha _3}s} \right) ^{ - {\alpha _{12}} - \frac{{{\alpha _{13}}}}{{{\alpha _3}}}}}{P_n}^{\left( {{\alpha _{10}} - 1,\frac{{{\alpha _{11}}}}{{{\alpha _3}}} - {\alpha _{10}} - 1} \right) }\left( {1 - 2{\alpha _3}s} \right) \end{aligned}$$
(A.2)

and

$$\begin{aligned}&n\alpha _2-(2n+1)\alpha _5+(2n+1)\left( \sqrt{\alpha _9}+\alpha _3\sqrt{\alpha _8}\right) +n(n-1)\alpha _3+\alpha _7\nonumber \\&\quad +\,2\alpha _3\alpha _8+2\sqrt{\alpha _8\alpha _9}=0, \end{aligned}$$
(A.3)

respectively. The parameters \(\alpha _4\),..., \(\alpha _{13}\) are obtained from the six parameters \(\alpha _1\),..., \(\alpha _3\), \(\beta _1\),...,\(\beta _3\) from Eq. (A.1) as follows:

$$\begin{aligned} \begin{array}{l} \alpha _4=\frac{1}{2}(1-\alpha _1),\quad \alpha _5=\frac{1}{2}(\alpha _2-2\alpha _3),\quad \alpha _6=\alpha _5^2+\beta _1,\quad \alpha _7=2\alpha _4\alpha _5-\beta _2,\\ \alpha _8=\alpha _4^2+\beta _3,\quad \alpha _9=\alpha _3\alpha _7+\alpha _3^2\alpha _8+\alpha _6,\quad \alpha _{10}=\alpha _1+2\alpha _4+2\sqrt{\alpha _8},\\ \alpha _{11}=\alpha _2-2\alpha _5+2\left( \sqrt{\alpha _9}+\alpha _3\sqrt{\alpha _8}\right) ,\quad \alpha _{12}=\alpha _4+\sqrt{\alpha _8},\quad \\ \alpha _{13}=\alpha _5-\sqrt{\alpha _9}-\alpha _3\sqrt{\alpha _8}. \end{array} \end{aligned}$$
(A.4)

In the particular case where \(\alpha _3=0\), as in our case, we find

$$\begin{aligned} \mathop {\lim }\limits _{{\alpha _3} \rightarrow 0} {P_n}^{\left( {{\alpha _{10}} - 1,\frac{{{\alpha _{11}}}}{{{\alpha _3}}} - {\alpha _{10}} - 1} \right) }\left( {1 - 2{\alpha _3}s} \right) = L_n^{{\alpha _{10}} - 1}({\alpha _{11}}s), \end{aligned}$$
(A.5)

and the wave-function becomes

$$\begin{aligned} \psi (s)=s^{\alpha _{12}}\exp \left( \alpha _{13}s\right) \; L_n^{\alpha _{10}-1}\left( \alpha _{11}s\right) , \end{aligned}$$
(A.6)

where \(L_n^{(\alpha )}\) denotes the generalized Laguerre polynomial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Montigny, M., Zare, S. & Hassanabadi, H. Fermi field and Dirac oscillator in a Som–Raychaudhuri space-time. Gen Relativ Gravit 50, 47 (2018). https://doi.org/10.1007/s10714-018-2370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2370-8

Keywords

Navigation