# Hawking radiation inside a Schwarzschild black hole

## Abstract

The boundary of any observer’s spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer’s spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy–momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy–momentum inside a Schwarzschild black hole. The quantum energy–momentum near the singularity diverges as \(r^{-6}\), and consists of relativistic Hawking radiation and negative energy vacuum in the ratio \(3 : -\,2\). The classical back reaction of the quantum energy–momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy–momentum in 1 + 1 spacetime dimensions.

## Keywords

Black holes Black hole interiors Hawking radiation Trace anomaly## Notes

### Acknowledgements

This research was supported in part by FQXI mini-grant FQXI-MGB-1626. I thank Prof. M. J. Duff for confirming that massive as well as massless fields should be taken into account in calculating the trace anomaly.

## Supplementary material

## References

- 1.Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D
**7**, 2333 (1973). https://doi.org/10.1103/PhysRevD.7.2333 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 2.Hawking, S.W.: Black hole explosions? Nature
**248**, 30 (1974)ADSCrossRefzbMATHGoogle Scholar - 3.Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D
**14**, 2460 (1976). https://doi.org/10.1103/PhysRevD.14.2460 ADSMathSciNetCrossRefGoogle Scholar - 4.Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D
**48**, 3743 (1993). https://doi.org/10.1103/PhysRevD.48.3743 ADSMathSciNetCrossRefGoogle Scholar - 5.Maldacena, J.: The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys.
**2**, 231 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 6.Candelas, P.: Vaccum polarization in Schwarzschild spacetime. Phys. Rev. D
**21**, 2185 (1980)ADSMathSciNetCrossRefGoogle Scholar - 7.Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
- 8.Hofmann, D.: Quantum radiation from black holes. Ph.D. thesis, Vienna, Tech. U. (2002). http://alice.cern.ch/format/showfull?sysnb=2337526
- 9.Brout, R., Massar, S., Parentani, R., Spindel, P.: A primer for black hole quantum physics. Phys. Rep.
**260**, 329 (1995). https://doi.org/10.1016/0370-1573(95)00008-5 ADSMathSciNetCrossRefGoogle Scholar - 10.Fiziev, P.P.: On the exact solutions of the Regge–Wheeler equation in the Schwarzschild black hole interior (2006). arXiv:gr-qc/0603003
- 11.Fiziev, P.P.: Classes of exact solutions to Regge–Wheeler and Teukolsky equations (2009). arXiv:0902.1277 [gr-qc]
- 12.Fiziev, P.P.: Novel representation of the general Heun’s functions (2014). arXiv:1405.6837 [math-ph]
- 13.Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Energy–momentum tensor near an evaporating black hole. Phys. Rev. D
**13**, 2720 (1976)ADSCrossRefGoogle Scholar - 14.Davies, P.C.W., Fulling, S.A.: Quantum vacuum energy in two dimensional space-times. Proc. R. Soc. Lond. A
**354**, 59 (1977)ADSMathSciNetCrossRefGoogle Scholar - 15.Chakraborty, S., Singh, S., Padmanabhan, T.: A quantum peek inside the black hole event horizon. JHEP
**06**, 192 (2015). https://doi.org/10.1007/JHEP06(2015)192 ADSMathSciNetCrossRefGoogle Scholar - 16.Hodgkinson, L., Louko, J.: Static, stationary and inertial Unruh–DeWitt detectors on the BTZ black hole. Phys. Rev. D
**86**(2012). https://doi.org/10.1103/PhysRevD.86.064031 - 17.Carlip, S.: The (2 + 1)-dimensional black hole. Class. Quant. Gravity
**12**, 2853 (1995). https://doi.org/10.1088/0264-9381/12/12/005 ADSCrossRefzbMATHGoogle Scholar - 18.Hodgkinson, L., Louko, J., Ottewill, A.C.: Static detectors and circular-geodesic detectors on the Schwarzschild black hole. Phys. Rev. D
**89**, 104002 (2014). https://doi.org/10.1103/PhysRevD.89.104002 ADSCrossRefGoogle Scholar - 19.Hodgkinson, L.: Particle detectors in curved spacetime quantum field theory. Ph.D. thesis (2013)Google Scholar
- 20.Juárez-Aubry, B.A.: Asymptotics in the time-dependent Hawking and Unruh effects. Ph.D. thesis (2017)Google Scholar
- 21.Saini, A., Stojkovic, D.: Hawking-like radiation and the density matrix for an infalling observer during gravitational collapse. Phys. Rev. D
**94**, 064028 (2016). https://doi.org/10.1103/PhysRevD.94.064028 ADSMathSciNetCrossRefGoogle Scholar - 22.Hiscock, W.A., Larson, S.L., Anderson, P.R.: Semiclassical effects in black hole interiors. Phys. Rev. D
**56**, 3571 (1997). https://doi.org/10.1103/PhysRevD.56.3571 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 23.Christensen, S.M., Fulling, S.A.: Trace anomalies and the Hawking effect. Phys. Rev. D
**15**, 2088 (1977)ADSCrossRefGoogle Scholar - 24.Visser, M.: Gravitational vacuum polarization. 4: Energy conditions in the Unruh vacuum. Phys. Rev. D
**56**, 936 (1997). https://doi.org/10.1103/PhysRevD.56.936 ADSMathSciNetCrossRefGoogle Scholar - 25.Bardeen, J.M.: Black hole evaporation without an event horizon (2014). arXiv:1406.4098 [gr-qc]
- 26.Hamilton, A.J.S., Polhemus, G.: Stereoscopic visualization in curved spacetime: seeing deep inside a black hole. N. J. Phys.
**12**, 123027 (2010). https://doi.org/10.1088/1367-2630/12/12/123027 CrossRefGoogle Scholar - 27.Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
- 28.Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys.
**43**, 199 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 29.Visser, M.: Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D
**12**, 649 (2003). https://doi.org/10.1142/S0218271803003190 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 30.Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Co, London (1973)Google Scholar
- 31.Sriramkumar, L., Padmanabhan, T.: Probes of the vacuum structure of quantum fields in classical backgrounds. Int. J. Mod. Phys. D
**11**, 1 (2002). https://doi.org/10.1142/S0218271802001354 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 32.Howard, K.W.: Vacuum \(\langle {T}_\mu ^\nu \rangle \) in schwarzschild spacetime. Phys. Rev. D
**30**, 2532 (1984)ADSMathSciNetCrossRefGoogle Scholar - 33.Duff, M.J.: Twenty years of the Weyl anomaly. Class. Quant. Gravity
**11**, 1387 (1994). https://doi.org/10.1088/0264-9381/11/6/004 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 34.Hawking, S.W., Hertog, T., Reall, H.S.: Trace anomaly driven inflation. Phys. Rev. D
**63**, 083504 (2001). https://doi.org/10.1103/PhysRevD.63.083504 ADSMathSciNetCrossRefGoogle Scholar - 35.Asorey, M., Gorbar, E.V., Shapiro, I.L.: Universality and ambiguities of the conformal anomaly. Class. Quant. Gravity
**21**, 163 (2003). https://doi.org/10.1088/0264-9381/21/1/011 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 36.Christensen, S.M., Duff, M.J.: Axial and conformal anomalies for arbitrary spin in gravity and supergravity. Phys. Lett.
**76B**, 571 (1978)ADSCrossRefGoogle Scholar - 37.Kolb, E.W., Turner, M.S.: The early universe. Front. Phys.
**69**, 1 (1990)ADSMathSciNetzbMATHGoogle Scholar - 38.Page, D.N.: Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D
**13**, 198 (1976)ADSCrossRefGoogle Scholar - 39.Grumiller, D., Kummer, W., Vassilevich, D.V.: Dilaton gravity in two-dimensions. Phys. Rep.
**369**, 327 (2002). https://doi.org/10.1016/S0370-1573(02)00267-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 40.Regge, T., Wheeler, J.A.: Stability of the Schwarzschild singularity. Phys. Rev.
**108**, 1063 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 41.Kruskal, M.D.: Maximal extension of Schwarzschild metric. Phys. Rev.
**119**, 1743 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 42.Szekeres, G.: On the singularities of a Riemann manifold. Publ. Mat. Debr.
**7**, 285 (1960)zbMATHGoogle Scholar - 43.Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)zbMATHGoogle Scholar