Advertisement

Light deflection and Gauss–Bonnet theorem: definition of total deflection angle and its applications

  • Hideyoshi Arakida
Editor’s Choice (Research Article)

Abstract

In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.

Keywords

Gravitation Cosmological constant Light deflection 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 15K05089.

Supplementary material

References

  1. 1.
    Dyson, F.W., Eddington, A.S., Davidson, C.: A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philos. Trans. R. Soc. Lond. Ser. A 220, 291–333 (1920)ADSCrossRefGoogle Scholar
  2. 2.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relat. 17, 4 (2014)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lenses. Springer, Berlin, Heidelberg, New York (1999)Google Scholar
  4. 4.
    Schneider, P., Kochanek, C., Wambsganss, J.: Gravitational Lensing: Strong, Weak and Micro. Springer, Berlin, Heidelberg, New York (2006)Google Scholar
  5. 5.
    Islam, J.N.: The cosmological constant and classical tests of general relativity. Phys. Lett. A 97, 239–241 (1983)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Rindler, W., Ishak, M.: Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D 76, 043006 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Ishak, M., Rindler, W.: The relevance of the cosmological constant for lensing. Gen. Relativ. Gravit. 42, 2247–2268 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lake, K.: Bending of light and the cosmological constant. Phys. Rev. D 65, 087301 (2002)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Park, M.: Rigorous approach to gravitational lensing. Phys. Rev. D 78, 023014 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Khriplovich, I.B., Pomeransky, A.A.: Does the cosmological term influence gravitational lensing? Int. J. Mod. Phys. D 17, 2255–2259 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Simpson, F., Peacock, J.A., Heavens, A.F.: On lensing by a cosmological constant, on lensing by a cosmological constant. MNRAS 402, 2009–2016 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Bhadra, A., Biswas, S., Sarkar, K.: Gravitational deflection of light in the Schwarzschild–de Sitter space-time. Phys. Rev. D 82, 063003 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Miraghaei, H., Nouri-Zonoz, M.: Classical tests of general relativity in the Newtonian limit of the Schwarzschild–de Sitter spacetime. Gen. Relativ. Gravit. 42, 2947–2956 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Biressa, T., de Freitas Pacheco, J.A.: The cosmological constant and the gravitational light bending. Gen. Relativ. Gravit. 43, 2649–2659 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Arakida, H., Kasai, M.: Effect of the cosmological constant on the bending of light and the cosmological lens equation. Phys. Rev. D 85, 023006 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Hammad, F.: A note on the effect of the cosmological constant on the bending of light. Mod. Phys. Lett. A 28, 1350181 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lebedev, D., Lake, K.: On the influence of the cosmological constant on trajectories of light and associated measurements in Schwarzschild de Sitter space. arXiv:1308.4931 (2013)
  18. 18.
    Batic, D., Nelson, S., Nowakowski, M.: Light on curved backgrounds. Phys. Rev. D 91, 104015 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Arakida, H.: Effect of the cosmological constant on light deflection: time transfer function approach. Universe 2, 5 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Gibbons, G.W., Werner, M.C.: Applications of the Gauss Bonnet theorem to gravitational lensing. Class. Quantum Gravity 25, 235009 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gibbons, G.W., Warnick, C.M., Werner, M.C.: Light bending in Schwarzschild de Sitter: projective geometry of the optical metric. Class. Quantum Gravity 25, 245009 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ishihara, A., Suzuki, Y., Ono, T., Kitamura, T., Asada, H.: Gravitational bending angle of light for finite distance and the Gauss–Bonnet theorem. Phys. Rev. D 94, 084015 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Ishihara, A., Suzuki, Y., Ono, T., Asada, H.: Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D 95, 044017 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Carroll, S.: The cosmological constant. Living Rev. Relativ. 4, 1 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Abramowicz, M.A., Carter, B., Lasota, J.P.: Optical reference geometry for stationary and static dynamics. Gen. Relativ. Gravit. 20, 1173–1183 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)zbMATHGoogle Scholar
  28. 28.
    Klingenberg, W.: A Course in Differential Geometry. Springer, New York (1978)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kreyszig, E.: Differential Geometry. Dover Publications, New York (1991)zbMATHGoogle Scholar
  30. 30.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces, 2nd edn. Dover Publications, Mineola, New York (2016)zbMATHGoogle Scholar
  31. 31.
    Rindler, W.: Relativity: Special, General, and Cosmological, 2nd edn. Oxford University Press, New York (2006)zbMATHGoogle Scholar
  32. 32.
    Epstein, R., Shapiro, I.I.: Post-post-Newtonian deflection of light by the Sun. Phys. Rev. D 22, 2947–2949 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    Kottler, F.: Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen. Phys. 361, 401–462 (1918)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Flamm, L.: Beiträge zur Einsteinschen Gravitationstheorie. Phys. Z. 17, 448–454 (1916)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of EngineeringNihon UniversityKoriyamaJapan

Personalised recommendations