Skip to main content
Log in

Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh–Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein–Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter (\(\rho _{0}\)) were explicitly plotted. The results show that, when the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter at \(r=1\) (\(\rho _{0}\)) vanish \((\rho _{0}=\epsilon =0)\), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing \(\rho _{0}\), the transition points are shifted to lower entropies. The same thing is observed when increasing \(\epsilon ^{2}\). In the absence of quintessence-like matter (\(\rho _{0}=0\)), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing \(\rho _{0}\) or \((\epsilon ^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Babichev, E.O., Dokuchaev, V.I., Eroshenko, Y.N.: Physics-Uspekhi 56, 1155–1175 (2013)

    Article  ADS  Google Scholar 

  2. Perlmutter, S.: Rev. Mod. Phys. 84, 1127–1150 (2012)

    Article  ADS  Google Scholar 

  3. Riess, A.G.: Rev. Mod. Phys. 84, 1165–1176 (2012)

    Article  ADS  Google Scholar 

  4. Uniyal, R., Chandrachani Devi, N., Nandan, H., Purohit, K.D.: Gen. Relativ. Gravit. 74, 16 (2015)

    Article  ADS  Google Scholar 

  5. Jamil, M., Hussain, S., Majeed, B.: Eur. Phys. J. C 75, 24 (2015)

    Article  ADS  Google Scholar 

  6. Schmidt, B.P.: Rev. Mod. Phys. 84, 1151–1164 (2012)

    Article  ADS  Google Scholar 

  7. Padmanabhan, T.: Phys. Rep. 380, 235–320 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cunha, J.V., Alcaniz, J.S., Lima, J.A.S.: Phys. Rev. D 69, 083501 (2004)

    Article  ADS  Google Scholar 

  9. Caldwell, R.R.: Phys. Lett. B 545, 23–29 (2002)

    Article  ADS  Google Scholar 

  10. Chimento, L.P., Lazkoz, R.: Phys. Rev. Lett. 91, 21 (2003)

    Article  Google Scholar 

  11. Caldwell, R.R., Dave, R., Steinhard, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  12. Sahni, V., Wang, L.: Phys. Rev. D 62, 103517 (2000)

    Article  ADS  Google Scholar 

  13. Capozziello, S., Cardone, V.F., Piedipalumbo, E., Rubano, C.: Class. Quantum Grav. 23, 1205–1216 (2006)

    Article  ADS  Google Scholar 

  14. Vikman, Alexander: Phys. Rev. D 71, 023515 (2005)

    Article  ADS  Google Scholar 

  15. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  16. Scherrer, R.J.: Phys. Rev. Lett. 93, 011301 (2004)

    Article  ADS  Google Scholar 

  17. Wei, H., Cai, R.G., Zeng, D.F.: Class. Quantum Grav. 22, 3189–3202 (2005)

    Article  ADS  Google Scholar 

  18. Zhao, G.B., Xia, J.Q., Li, M., Feng, B., Zhang, X.: Phys. Rev. D 72, 123515 (2005)

    Article  ADS  Google Scholar 

  19. Chimento, L.P., Forte, M., Lazkoz, R., Richarte, M.G.: Phys. Rev. D 79, 043502 (2009)

    Article  ADS  Google Scholar 

  20. VKiselev, V.: Class. Quantum Grav. 20, 1187–1197 (2003)

    Article  ADS  Google Scholar 

  21. Xi, P.: Astrophys. Space Sci. 321, 47–51 (2009)

    Article  ADS  Google Scholar 

  22. Bouetou, T.B., Saleh, M., Timoleon, C.K.: Gen. Relativ. Gravit. 44, 2181–2189 (2012)

    Article  Google Scholar 

  23. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  24. Li, X.Z., Xi, P., Zhai, X.H.: Phys. Lett. B 666, 125–130 (2008)

    Article  ADS  Google Scholar 

  25. Barriola, M., Vilenkin, A.: Phys. Rev. Lett. 63, 341–343 (1989)

    Article  ADS  Google Scholar 

  26. Harari, D., Lousto, C.: Phys. Rev. D 42, 2626–2631 (1990)

    Article  ADS  Google Scholar 

  27. Shi, X., Li, X.: Class. Quantum Grav. 8, 761–767 (1991)

    Article  ADS  Google Scholar 

  28. Zhou, S.: Int. J. Mod. Phys. D 26, 1750062 (2017)

    Article  ADS  Google Scholar 

  29. Xu, H., Xu, Z.M.: Int. J. Mod. Phys. D 26, 1750037 (2017)

    Article  ADS  Google Scholar 

  30. Davies, P.C.W.: Proc. R. Soc. Lond. A 353, 499–521 (1977)

    Article  ADS  Google Scholar 

  31. Davies, P.C.W.: Rep. Prog. Phys. 41, 1313–1355 (1978)

    Article  ADS  Google Scholar 

  32. Davies, P.C.W.: Class. Quantum Grav. 6, 1909–1914 (1989)

    Article  ADS  Google Scholar 

  33. Kim, W., Kim, Y.: Phys. Lett. B 718, 687–691 (2012)

    Article  ADS  Google Scholar 

  34. Stephens, G.J., Hu, B.L.: Int. J. Theor. Phys. 40, 2183–2200 (2001)

    Article  Google Scholar 

  35. Bekensteing, J.D.: Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  36. Page, D.N.: New J. Phys. 7, 203 (2005)

    Article  ADS  Google Scholar 

  37. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  Google Scholar 

  38. Tharanath, R., Varghese, N., Kuriakose, V.C.: Mod. Phys. Lett. A 29, 1450057 (2014)

    Article  ADS  Google Scholar 

  39. Banerjee, R., Majhi, B.R., Samanta, S.: Phys. Lett. B 767, 25–28 (2017)

    Article  ADS  Google Scholar 

  40. Hawking, S.W.: Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  41. Bekenstein, J.D.: Phys. Rev. D 9, 3292–3300 (1974)

    Article  ADS  Google Scholar 

  42. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Parikh, M.K.: Phys. Lett. B 546, 189 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  44. Parikh, M.K.: Int. J. Mod. Phys. 13, 2351 (2004)

    Article  ADS  Google Scholar 

  45. Parikh, M.K.: Gen. Relativ. Gravit. 36, 2419 (2004)

    Article  ADS  Google Scholar 

  46. Zhai, Z., Liu, W.: Astrophys. Space Sci. 325, 63–67 (2010)

    Article  ADS  Google Scholar 

  47. Saleh, M., Thomas, B., Kofane, T.C.: Astrophys. Space Sci. 333, 449–455 (2011)

    Article  ADS  Google Scholar 

  48. Niu, Z.F., Liu, W.B.: Res. Astron. Astrophys. 10, 33 (2010)

    Article  ADS  Google Scholar 

  49. Jiang, Q.Q., Wu, S.Q.: Phys. Lett. B 635, 151–155 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  50. Mathur, S.D.: Class. Quantum Grav. 28, 125010 (2011)

    Article  ADS  Google Scholar 

  51. Hemming, S., Keski-Vakkuri, E.: Phys. Rev. D 64, 044006 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  52. Vagenas, E.C.: Phys. Lett. B 503, 399 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  53. Majhi, B.R., Vagenas, E.C.: Phys. Lett. B 701, 623 (2011)

    Article  ADS  Google Scholar 

  54. Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  55. Pu, J., Han, Y.: Int. J. Theor. Phys. 56, 2061–2070 (2017)

    Article  Google Scholar 

  56. Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Phys. Lett. B 665, 106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  57. Vagenas, E.C.: Mod. Phys. Lett. A 17, 609 (2002)

    Article  ADS  Google Scholar 

  58. Ding, C.K., Jing, J.L.: Gen. Relativ. Gravit. 41, 2529 (2009)

    Article  ADS  Google Scholar 

  59. Shankaranarayanan, S., Srinivasan, K., Padmanabhan, T.: Mod. Phys. Lett. A 16, 571 (2001)

    Article  ADS  Google Scholar 

  60. Liu, C.Z., Zhang, J.Y., Zhao, Z.: Phys. Lett. B 639, 670 (2006)

    Article  ADS  Google Scholar 

  61. Rahman, M.A., Hossain, M.I.: Phys. Lett. B 712, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  62. Stone, M.: Class. Quantum Grav. 30, 085003 (2013)

    Article  ADS  Google Scholar 

  63. Ma, Z.Z.: Class. Quantum Grav. 26, 045002 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamiko Kouemeni Jean Rodrigue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigue, K.K.J., Saleh, M., Thomas, B.B. et al. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle. Gen Relativ Gravit 50, 52 (2018). https://doi.org/10.1007/s10714-018-2367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2367-3

Keywords

Navigation