Skip to main content
Log in

Terrestrial Sagnac delay constraining modified gravity models

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Modified gravity theories include \(f({\mathbf {R}})\)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-\(f({\mathbf { R}}_{0})\) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific \(f({\mathbf {R }})\)-gravity prescriptions. We shall assume that a Kerr-\(f({\mathbf {R}}_{0})\) solution asymptotically describes Earth’s weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific \(f({\mathbf {R}})\) prescriptions. Despite using the weak field gravity near Earth’s surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Even if the error residual is a bit higher, it does not significantly alter the limit on \({\mathbf {R}}_{0}\).

  2. We thank an anonymous reviewer for pointing it out to us.

  3. Ruggiero’s notation k is the same as \({\mathbf {R}}_{0}/4\) or \({\varLambda } /2\) in our notation.

References

  1. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics, Fundamental Theories of Physics, vol. 170. Springer, New York (2011)

    MATH  Google Scholar 

  2. Pérez, D., Romero, G.E., Perez Bergliaffa, S.E.: Accretion disks around black holes in modified strong gravity. Astron. Astrophys. 551, A4 (2013)

    Article  Google Scholar 

  3. Cembranos, J.A.R., de la Cruz-Dombriz, A., Jimeno Romero, P.: Kerr-Newman black holes in \(f(R)\) theories. Int. J. Geom. Methods Mod. Phys. 11, 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carter, B.: Black hole equilibrium states, part I analytic and geometric properties of the Kerr solutions. In: DeWitt, C., DeWitt, B. (eds.) Black holes—les Astres Occlus, pp. 61–124. Gordon and Breach, New York (1973)

  5. Hafele, J.C., Keating, R.E.: Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166 (1972)

    Article  ADS  Google Scholar 

  6. Hafele, J.C., Keating, R.E.: Around-the-world atomic clocks: observed relativistic time gains. Science 177, 168 (1972)

    Article  ADS  Google Scholar 

  7. Schlegel, R.: Phsyical sciences: flying clocks and the Sagnac effect. Nature (London) 242, 180 (1973)

    Article  ADS  Google Scholar 

  8. Allan, D.W., Weiss, M.A., Ashby, N.: Around-the-world relativistic Sagnac experiment. Science 228, 69 (1985)

    Article  ADS  Google Scholar 

  9. Bhadra, A., Nayak, T.B., Nandi, K.K.: String corrections to the Sagnac effect. Phys. Lett. A 295, 1 (2002)

    Article  ADS  MATH  Google Scholar 

  10. Nandi, K.K., Alsing, P.M., Evans, J.C., Nayak, T.B.: Brans–Dicke corrections to the gravitational Sagnac effect. Phys. Rev. D 63, 084027 (2001)

    Article  ADS  Google Scholar 

  11. Ashtekar, A., Magnon, A.: The Sagnac effect in general relativity. J. Math. Phys. 16, 341 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. Tartaglia, A.: General relativistic corrections to the Sagnac effect. Phys. Rev. D 58, 064009 (1998)

    Article  ADS  Google Scholar 

  13. Sultana, J.: The Sagnac effect in conformal Weyl gravity. Gen. Relativ. Gravit. 46, 1710 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Mashhoon, B.: On the gravitational analogue of Larmor’s theorem. Phys. Lett. A 173, 347 (1993)

    Article  ADS  Google Scholar 

  15. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Semon, M.D.: Experimental verification of an Aharonov–Bohm effect in rotating reference frames. Found. Phys. 12, 49 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ruggiero, M.L.: Gravito-electromagnetic Aharonov–Bohm effect: some rotation effects revised. Nuovo Cim. B 119, 893 (2004)

    ADS  MathSciNet  Google Scholar 

  18. Sakurai, J.J.: Comments on quantum-mechanical interference due to the Earth’s rotation. Phys. Rev. D 21, 2993 (1980)

    Article  ADS  Google Scholar 

  19. Nandi, K.K., Zhang, Y.-Z.: General relativistic effects on quantum interference and the principle of equivalence. Phys. Rev. D 66, 063005 (2002)

    Article  ADS  Google Scholar 

  20. Alsing, P.M., Evans, J.C., Nandi, K.K.: The phase of a quantum mechanical particle in curved spacetime. Gen. Relativ. Gravit. 33, 1459 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Cohen, J.M., Mashhoon, B.: Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A 181, 353 (1993)

    Article  ADS  Google Scholar 

  22. Lichtenegger, H.I.M., Iorio, L.: The twin paradox and Machs principle. Eur. Phys. J. Plus 126, 129 (2011)

    Article  Google Scholar 

  23. Everitt, C.W.F., et al.: Gravity Probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)

    Article  ADS  Google Scholar 

  24. Everitt, C.W.F., et al.: The Gravity Probe B test of general relativity. Class. Quantum Grav. 32, 224001 (2015)

    Article  ADS  Google Scholar 

  25. Smith, D.E., Dunn, P.J.: Long term evolution of the Lageos Orbit. Geophys. Res. Lett. 7, 437 (1980)

    Article  ADS  Google Scholar 

  26. Ruggiero, M.L.: Gravitomagnetic gyroscope precession in Palatini \(f(R)\) gravity. Phys. Rev. D 79, 084001 (2009)

    Article  ADS  Google Scholar 

  27. Hackmann, E., Lämmerzahl, C.: Observables for bound orbital motion in axially symmetric space-times. Phys. Rev. D 85, 044049 (2012). (and references therein)

    Article  ADS  Google Scholar 

  28. Hackmann, E., Lämmerzahl, C.: Complete analytic solution of the geodesic equation in Schwarzschild–(anti-)de Sitter spacetimes. Phys. Rev. Lett. 100, 171101 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hackmann, E., Kagramanova, V., Kunz, J., Lämmerzahl, C.: Analytical solution of the geodesic equation in Kerr–(anti-) de Sitter space-times. Phys. Rev. D 81, 044020 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  31. Kagramanova, V., Kunz, J., Lämmerzahl, C.: Solar system effects in Schwarzschildde Sitter spacetime. Phys. Lett. B 634, 465 (2006)

    Article  ADS  Google Scholar 

  32. Sereno, M., Jetzer, P.: Solar and stellar system tests of the cosmological constant. Phys. Rev. D 73, 063004 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of the reported study was funded by RFBR according to the research project No. 16-32-00323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Izmailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, R.K., Izmailov, R.N., Potapov, A.A. et al. Terrestrial Sagnac delay constraining modified gravity models. Gen Relativ Gravit 50, 44 (2018). https://doi.org/10.1007/s10714-018-2365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2365-5

Keywords

Navigation