# 2-vertex Lorentzian spin foam amplitudes for dipole transitions

- 206 Downloads
- 2 Citations

## Abstract

We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch–Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

## Keywords

Loop quantum gravity Spin foams SL(2, C) Clebsch–Gordan coefficients## Notes

### Acknowledgements

We are grateful to Pietro Donà and Marco Fanizza for many helpful discussions about numerical aspects and to Marcin Kisielowski and Thomas Krajewski about generalised spin foams, and to Francesca Vidotto for initial motivations and a reading of the manuscript. Simone thanks Daniele Oriti for discussions on spin foam expectation values.

## Supplementary material

## References

- 1.Perez, A.: The spin foam approach to quantum gravity. Living Rev. Rel.
**16**, 3 (2013). arXiv:1205.2019 CrossRefzbMATHGoogle Scholar - 2.Engle, J., Pereira, R., Rovelli, C.: The Loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett.
**99**, 161301 (2007). arXiv:0705.2388 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 3.Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B
**799**, 136–149 (2008). arXiv:0711.0146 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 4.Freidel, L., Krasnov, K.: A new spin foam model for 4d gravity. Class. Quant. Grav.
**25**, 125018 (2008). arXiv:0708.1595 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 5.Livine, E.R., Speziale, S.: Consistently solving the simplicity constraints for spinfoam quantum gravity. Europhys. Lett.
**81**, 50004 (2008). arXiv:0708.1915 ADSCrossRefGoogle Scholar - 6.Kaminski, W., Kisielowski, M., Lewandowski, J.: Spin-foams for all loop quantum gravity. Class. Quant. Grav.
**27**, 095006 (2010). arXiv:0909.0939 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 7.Ding, Y., Han, M., Rovelli, C.: Generalized spinfoams. Phys. Rev. D
**83**, 124020 (2011). arXiv:1011.2149 ADSCrossRefGoogle Scholar - 8.Haggard, H.M., Han, M., Kamiński, W., Riello, A.: Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks. Phys. Lett. B
**752**, 258–262 (2016). arXiv:1509.00458 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 9.Barrett, J.W., Dowdall, R., Fairbairn, W.J., Gomes, H., Hellmann, F.: Asymptotic analysis of the EPRL four-simplex amplitude. J. Math. Phys.
**50**, 112504 (2009). arXiv:0902.1170 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 10.Barrett, J.W., Dowdall, R., Fairbairn, W.J., Hellmann, F., Pereira, R.: Lorentzian spin foam amplitudes: graphical calculus and asymptotics. Class. Quantum Gravity
**27**, 165009 (2010). arXiv:0907.2440 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 11.Christensen, J.D., Livine, E.R., Speziale, S.: Numerical evidence of regularized correlations in spin foam gravity. Phys. Lett. B
**670**, 403–406 (2009). arXiv:0710.0617 ADSMathSciNetCrossRefGoogle Scholar - 12.Christensen, J.D., Khavkine, I., Livine, E.R., Speziale, S.: Sub-leading asymptotic behaviour of area correlations in the Barrett–Crane model. Class. Quantum Gravity
**27**, 035012 (2010). arXiv:0908.4476 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 13.Donà, P., Fanizza, M., Sarno, G., Speziale, S.: SU(2) graph invariants, Regge actions and polytopes, arXiv:1708.01727
- 14.Donà, P., Fanizza, M., Sarno, G., Speziale, S.: Numerical studies of the Lorentzian EPRL vertex amplitude (in preparation)Google Scholar
- 15.Delcamp, C., Dittrich, B.: Towards a phase diagram for spin foams. Class. Quantum Gravity
**34**(22), 225006 (2017). arXiv:1612.04506 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 16.Bahr, B., Steinhaus, S.: Numerical evidence for a phase transition in 4d spin foam quantum gravity. Phys. Rev. Lett.
**117**(14), 141302 (2016). arXiv:1605.07649 ADSCrossRefGoogle Scholar - 17.Bahr, B., Kloser, S., Rabuffo, G.: Towards a Cosmological subsector of Spin Foam Quantum Gravity, arXiv:1704.03691
- 18.Speziale, S.: Boosting Wigner’s nj-symbols. J. Math. Phys.
**58**(3), 032501 (2017). arXiv:1609.01632 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 19.Rovelli, C., Vidotto, F.: Stepping out of homogeneity in loop quantum cosmology. Class. Quantum Gravity
**25**, 225024 (2008). arXiv:0805.4585 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 20.Bianchi, E., Rovelli, C., Vidotto, F.: Towards spinfoam cosmology. Phys. Rev. D
**82**, 084035 (2010). arXiv:1003.3483 ADSCrossRefGoogle Scholar - 21.Borja, E.F., Garay, I., Vidotto, F.: Learning about quantum gravity with a couple of nodes. SIGMA
**8**, 015 (2012). arXiv:1110.3020 MathSciNetzbMATHGoogle Scholar - 22.Bianchi, E., Krajewski, T., Rovelli, C., Vidotto, F.: Cosmological constant in spinfoam cosmology. Phys. Rev. D
**83**, 104015 (2011). arXiv:1101.4049 ADSCrossRefGoogle Scholar - 23.Vidotto, F.: Many-nodes/many-links spinfoam: the homogeneous and isotropic case. Class. Quantum Gravity
**28**, 245005 (2011). arXiv:1107.2633 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 24.Kisielowski, M., Lewandowski, J., Puchta, J.: One vertex spin-foams with the dipole cosmology boundary. Class. Quantum Gravity
**30**, 025007 (2013). arXiv:1203.1530 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 25.Rennert, J., Sloan, D.: A homogeneous model of spinfoam cosmology. Class. Quantum Gravity
**30**, 235019 (2013). arXiv:1304.6688 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 26.Battisti, M.V., Marciano, A.: Big bounce in dipole cosmology. Phys. Rev. D
**82**, 124060 (2010). arXiv:1010.1258 ADSCrossRefGoogle Scholar - 27.Borja, E.F., Diaz-Polo, J., Garay, I., Livine, E.R.: Dynamics for a 2-vertex quantum gravity model. Class. Quantum Gravity
**27**, 235010 (2010). arXiv:1006.2451 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 28.Livine, E.R., Martin-Benito, M.: Classical setting and effective dynamics for spinfoam cosmology, arXiv:1111.2867
- 29.Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quantum Gravity
**28**, 213001 (2011). arXiv:1108.0893 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 30.Alesci, E., Cianfrani, F.: Quantum-reduced loop gravity: cosmology. Phys. Rev. D
**87**(8), 083521 (2013). arXiv:1301.2245 ADSCrossRefzbMATHGoogle Scholar - 31.Alesci, E., Botta, G., Stagno, G.V.: QRLG effective hamiltonians from a statistical regularization scheme, arXiv:1709.08675
- 32.Varshalovich, D.A., Moskalev, A.N., Khersonsky, V.K.: Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. World Scientific, Singapore (1988)CrossRefzbMATHGoogle Scholar
- 33.Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
- 34.Bianchi, E., Modesto, L., Rovelli, C., Speziale, S.: Graviton propagator in loop quantum gravity. Class. Quantum Gravity
**23**, 6989–7028 (2006). arXiv:gr-qc/0604044 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 35.Bianchi, E., Ding, Y.: Lorentzian spinfoam propagator. Phys. Rev. D
**86**, 104040 (2012). arXiv:1109.6538 ADSCrossRefGoogle Scholar - 36.Reisenberger, M.P., Rovelli, C.: ’Sum over surfaces’ form of loop quantum gravity. Phys. Rev. D
**56**, 3490–3508 (1997). arXiv:gr-qc/9612035 ADSMathSciNetCrossRefGoogle Scholar - 37.Baez, J.C.: An Introduction to spin foam models of quantum gravity and BF theory, Lect. Notes Phys.
**543**, 25–94 (2000). arXiv:gr-qc/9905087. Published in in Geometry and Quantum Physics. Edited by H. Gausterer and H. Grosse. Springer, Berlin, 2000 - 38.De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett-Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys. B
**574**, 785–806 (2000). arXiv:hep-th/9907154 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 39.De Pietri, R., Petronio, C.: Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. J. Math. Phys.
**41**, 6671–6688 (2000). arXiv:gr-qc/0004045 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 40.Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D
**85**, 084037 (2012). arXiv:1202.3637 ADSCrossRefGoogle Scholar - 41.Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys.
**330**, 581–637 (2014). arXiv:1303.6772 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 42.Oriti, D.: Group field theory and loop quantum gravity, (2014). arXiv:1408.7112
- 43.Rovelli, C.: On the structure of a background independent quantum theory: Hamilton function, transition amplitudes, classical limit and continuous limit, arXiv:1108.0832
- 44.Livine, E.R., Speziale, S.: Group integral techniques for the spinfoam graviton propagator. JHEP
**11**, 092 (2006). arXiv:gr-qc/0608131 ADSMathSciNetCrossRefGoogle Scholar - 45.Dittrich, B., Freidel, L., Speziale, S.: Linearized dynamics from the 4-simplex Regge action. Phys. Rev. D
**76**, 104020 (2007). arXiv:0707.4513 ADSCrossRefGoogle Scholar - 46.Ruhl, W.: The Lorentz Group and Harmonic Analysis. W. A. Benjamin, San Francisco (1970)zbMATHGoogle Scholar
- 47.Baez, J.C., Barrett, J.W.: Integrability for relativistic spin networks. Class. Quantum Gravity
**18**, 4683–4700 (2001). arXiv:gr-qc/0101107 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 48.Kaminski, W.: All 3-edge-connected relativistic BC and EPRL spin-networks are integrable, arXiv:1010.5384
- 49.Kisielowski, M., Lewandowski, J., Puchta, J.: Feynman diagrammatic approach to spin foams. Class. Quantum Gravity
**29**, 015009 (2012). arXiv:1107.5185 ADSCrossRefzbMATHGoogle Scholar - 50.Charles, C., Livine, E.R.: The Fock space of loopy spin networks for quantum gravity. Gen. Relativ. Gravit.
**48**(8), 113 (2016). arXiv:1603.01117 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 51.Rennert, J., Sloan, D.: Anisotropic spinfoam cosmology. Class. Quantum Gravity
**31**, 015017 (2014). arXiv:1308.0687 ADSCrossRefzbMATHGoogle Scholar - 52.Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D
**28**, 2960–2975 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 53.Hartle, J.B., Hawking, S.W., Hertog, T.: The classical universes of the no-boundary quantum state. Phys. Rev. D
**77**, 123537 (2008). arXiv:0803.1663 ADSMathSciNetCrossRefGoogle Scholar - 54.Kerimov, G.A., Verdiev, I.A.: Clebsch–Gordan coefficients of the SL(2, c) group. Rep. Math. Phys.
**13**, 315–326 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 55.Bonzom, V., Livine, E.R., Smerlak, M., Speziale, S.: Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model. Nucl. Phys. B
**804**, 507–526 (2008). arXiv:0802.3983 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 56.Barrett, J.W., Fairbairn, W.J., Hellmann, F.: Quantum gravity asymptotics from the SU(2) 15j symbol. Int. J. Mod. Phys. A
**25**, 2897–2916 (2010). arXiv:0912.4907 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 57.Puchta, J.: Asymptotic of Lorentzian Polyhedra Propagator. arXiv:1307.4747
- 58.Donà, P.: Infrared divergences in the EPRL-FK Spin Foam model. arXiv:1803.00835 (in preparation)
- 59.Fanizza, M., Martin-Dussaud, P., Speziale, S.: Asymptotics of \(SL(2, {\mathbb{C}})\) tensor invariants (in preparation)Google Scholar
- 60.Perez, A.: Statistical and entanglement entropy for black holes in quantum geometry, Phys. Rev.
**D90**(8), 084015 (2014). arXiv:1405.7287. [Addendum: Phys. Rev.D90,no.8,089907(2014)] - 61.Bianchi, E., Guglielmon, J., Hackl, L., Yokomizo, N.: Loop expansion and the bosonic representation of loop quantum gravity. Phys. Rev. D
**94**(8), 086009 (2016). arXiv:1609.02219 ADSMathSciNetCrossRefGoogle Scholar - 62.Feller, A., Livine, E.R.: Quantum surface and intertwiner dynamics in loop quantum gravity. Phys. Rev. D
**95**(12), 124038 (2017). arXiv:1703.01156 ADSCrossRefGoogle Scholar - 63.Chirco, G., Mele, F.M., Oriti, D., Vitale, P.: Fisher metric, geometric entanglement and spin networks, arXiv:1703.05231
- 64.Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D
**74**, 084003 (2006). arXiv:gr-qc/0607039 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 65.Bahr, B., Steinhaus, S.: Investigation of the spinfoam path integral with quantum cuboid intertwiners. Phys. Rev. D
**93**(10), 104029 (2016). arXiv:1508.07961 ADSMathSciNetCrossRefGoogle Scholar - 66.Johansson, H.T., Forssén, C.: Fast and accurate evaluation of wigner 3j, 6j, and 9j symbols using prime factorisation and multi-word integer arithmetic. SIAM J. Sci. Stat. Comput.
**38**, A376–A384 (2016). arXiv:1504.08329 CrossRefzbMATHGoogle Scholar