2-vertex Lorentzian spin foam amplitudes for dipole transitions

  • Giorgio Sarno
  • Simone Speziale
  • Gabriele V. Stagno
Editor’s Choice (Research Article)


We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch–Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.


Loop quantum gravity Spin foams SL(2, C) Clebsch–Gordan coefficients 



We are grateful to Pietro Donà and Marco Fanizza for many helpful discussions about numerical aspects and to Marcin Kisielowski and Thomas Krajewski about generalised spin foams, and to Francesca Vidotto for initial motivations and a reading of the manuscript. Simone thanks Daniele Oriti for discussions on spin foam expectation values.

Supplementary material


  1. 1.
    Perez, A.: The spin foam approach to quantum gravity. Living Rev. Rel. 16, 3 (2013). arXiv:1205.2019 CrossRefzbMATHGoogle Scholar
  2. 2.
    Engle, J., Pereira, R., Rovelli, C.: The Loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett. 99, 161301 (2007). arXiv:0705.2388 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136–149 (2008). arXiv:0711.0146 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Freidel, L., Krasnov, K.: A new spin foam model for 4d gravity. Class. Quant. Grav. 25, 125018 (2008). arXiv:0708.1595 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Livine, E.R., Speziale, S.: Consistently solving the simplicity constraints for spinfoam quantum gravity. Europhys. Lett. 81, 50004 (2008). arXiv:0708.1915 ADSCrossRefGoogle Scholar
  6. 6.
    Kaminski, W., Kisielowski, M., Lewandowski, J.: Spin-foams for all loop quantum gravity. Class. Quant. Grav. 27, 095006 (2010). arXiv:0909.0939 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ding, Y., Han, M., Rovelli, C.: Generalized spinfoams. Phys. Rev. D 83, 124020 (2011). arXiv:1011.2149 ADSCrossRefGoogle Scholar
  8. 8.
    Haggard, H.M., Han, M., Kamiński, W., Riello, A.: Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks. Phys. Lett. B 752, 258–262 (2016). arXiv:1509.00458 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Barrett, J.W., Dowdall, R., Fairbairn, W.J., Gomes, H., Hellmann, F.: Asymptotic analysis of the EPRL four-simplex amplitude. J. Math. Phys. 50, 112504 (2009). arXiv:0902.1170 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barrett, J.W., Dowdall, R., Fairbairn, W.J., Hellmann, F., Pereira, R.: Lorentzian spin foam amplitudes: graphical calculus and asymptotics. Class. Quantum Gravity 27, 165009 (2010). arXiv:0907.2440 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Christensen, J.D., Livine, E.R., Speziale, S.: Numerical evidence of regularized correlations in spin foam gravity. Phys. Lett. B 670, 403–406 (2009). arXiv:0710.0617 ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Christensen, J.D., Khavkine, I., Livine, E.R., Speziale, S.: Sub-leading asymptotic behaviour of area correlations in the Barrett–Crane model. Class. Quantum Gravity 27, 035012 (2010). arXiv:0908.4476 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Donà, P., Fanizza, M., Sarno, G., Speziale, S.: SU(2) graph invariants, Regge actions and polytopes, arXiv:1708.01727
  14. 14.
    Donà, P., Fanizza, M., Sarno, G., Speziale, S.: Numerical studies of the Lorentzian EPRL vertex amplitude (in preparation)Google Scholar
  15. 15.
    Delcamp, C., Dittrich, B.: Towards a phase diagram for spin foams. Class. Quantum Gravity 34(22), 225006 (2017). arXiv:1612.04506 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bahr, B., Steinhaus, S.: Numerical evidence for a phase transition in 4d spin foam quantum gravity. Phys. Rev. Lett. 117(14), 141302 (2016). arXiv:1605.07649 ADSCrossRefGoogle Scholar
  17. 17.
    Bahr, B., Kloser, S., Rabuffo, G.: Towards a Cosmological subsector of Spin Foam Quantum Gravity, arXiv:1704.03691
  18. 18.
    Speziale, S.: Boosting Wigner’s nj-symbols. J. Math. Phys. 58(3), 032501 (2017). arXiv:1609.01632 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rovelli, C., Vidotto, F.: Stepping out of homogeneity in loop quantum cosmology. Class. Quantum Gravity 25, 225024 (2008). arXiv:0805.4585 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bianchi, E., Rovelli, C., Vidotto, F.: Towards spinfoam cosmology. Phys. Rev. D 82, 084035 (2010). arXiv:1003.3483 ADSCrossRefGoogle Scholar
  21. 21.
    Borja, E.F., Garay, I., Vidotto, F.: Learning about quantum gravity with a couple of nodes. SIGMA 8, 015 (2012). arXiv:1110.3020 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Bianchi, E., Krajewski, T., Rovelli, C., Vidotto, F.: Cosmological constant in spinfoam cosmology. Phys. Rev. D 83, 104015 (2011). arXiv:1101.4049 ADSCrossRefGoogle Scholar
  23. 23.
    Vidotto, F.: Many-nodes/many-links spinfoam: the homogeneous and isotropic case. Class. Quantum Gravity 28, 245005 (2011). arXiv:1107.2633 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kisielowski, M., Lewandowski, J., Puchta, J.: One vertex spin-foams with the dipole cosmology boundary. Class. Quantum Gravity 30, 025007 (2013). arXiv:1203.1530 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rennert, J., Sloan, D.: A homogeneous model of spinfoam cosmology. Class. Quantum Gravity 30, 235019 (2013). arXiv:1304.6688 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Battisti, M.V., Marciano, A.: Big bounce in dipole cosmology. Phys. Rev. D 82, 124060 (2010). arXiv:1010.1258 ADSCrossRefGoogle Scholar
  27. 27.
    Borja, E.F., Diaz-Polo, J., Garay, I., Livine, E.R.: Dynamics for a 2-vertex quantum gravity model. Class. Quantum Gravity 27, 235010 (2010). arXiv:1006.2451 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Livine, E.R., Martin-Benito, M.: Classical setting and effective dynamics for spinfoam cosmology, arXiv:1111.2867
  29. 29.
    Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001 (2011). arXiv:1108.0893 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Alesci, E., Cianfrani, F.: Quantum-reduced loop gravity: cosmology. Phys. Rev. D 87(8), 083521 (2013). arXiv:1301.2245 ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Alesci, E., Botta, G., Stagno, G.V.: QRLG effective hamiltonians from a statistical regularization scheme, arXiv:1709.08675
  32. 32.
    Varshalovich, D.A., Moskalev, A.N., Khersonsky, V.K.: Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. World Scientific, Singapore (1988)CrossRefzbMATHGoogle Scholar
  33. 33.
    Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  34. 34.
    Bianchi, E., Modesto, L., Rovelli, C., Speziale, S.: Graviton propagator in loop quantum gravity. Class. Quantum Gravity 23, 6989–7028 (2006). arXiv:gr-qc/0604044 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bianchi, E., Ding, Y.: Lorentzian spinfoam propagator. Phys. Rev. D 86, 104040 (2012). arXiv:1109.6538 ADSCrossRefGoogle Scholar
  36. 36.
    Reisenberger, M.P., Rovelli, C.: ’Sum over surfaces’ form of loop quantum gravity. Phys. Rev. D 56, 3490–3508 (1997). arXiv:gr-qc/9612035 ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Baez, J.C.: An Introduction to spin foam models of quantum gravity and BF theory, Lect. Notes Phys. 543, 25–94 (2000). arXiv:gr-qc/9905087. Published in in Geometry and Quantum Physics. Edited by H. Gausterer and H. Grosse. Springer, Berlin, 2000
  38. 38.
    De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett-Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785–806 (2000). arXiv:hep-th/9907154 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    De Pietri, R., Petronio, C.: Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. J. Math. Phys. 41, 6671–6688 (2000). arXiv:gr-qc/0004045 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012). arXiv:1202.3637 ADSCrossRefGoogle Scholar
  41. 41.
    Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581–637 (2014). arXiv:1303.6772 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Oriti, D.: Group field theory and loop quantum gravity, (2014). arXiv:1408.7112
  43. 43.
    Rovelli, C.: On the structure of a background independent quantum theory: Hamilton function, transition amplitudes, classical limit and continuous limit, arXiv:1108.0832
  44. 44.
    Livine, E.R., Speziale, S.: Group integral techniques for the spinfoam graviton propagator. JHEP 11, 092 (2006). arXiv:gr-qc/0608131 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Dittrich, B., Freidel, L., Speziale, S.: Linearized dynamics from the 4-simplex Regge action. Phys. Rev. D 76, 104020 (2007). arXiv:0707.4513 ADSCrossRefGoogle Scholar
  46. 46.
    Ruhl, W.: The Lorentz Group and Harmonic Analysis. W. A. Benjamin, San Francisco (1970)zbMATHGoogle Scholar
  47. 47.
    Baez, J.C., Barrett, J.W.: Integrability for relativistic spin networks. Class. Quantum Gravity 18, 4683–4700 (2001). arXiv:gr-qc/0101107 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kaminski, W.: All 3-edge-connected relativistic BC and EPRL spin-networks are integrable, arXiv:1010.5384
  49. 49.
    Kisielowski, M., Lewandowski, J., Puchta, J.: Feynman diagrammatic approach to spin foams. Class. Quantum Gravity 29, 015009 (2012). arXiv:1107.5185 ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Charles, C., Livine, E.R.: The Fock space of loopy spin networks for quantum gravity. Gen. Relativ. Gravit. 48(8), 113 (2016). arXiv:1603.01117 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Rennert, J., Sloan, D.: Anisotropic spinfoam cosmology. Class. Quantum Gravity 31, 015017 (2014). arXiv:1308.0687 ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960–2975 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Hartle, J.B., Hawking, S.W., Hertog, T.: The classical universes of the no-boundary quantum state. Phys. Rev. D 77, 123537 (2008). arXiv:0803.1663 ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Kerimov, G.A., Verdiev, I.A.: Clebsch–Gordan coefficients of the SL(2, c) group. Rep. Math. Phys. 13, 315–326 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Bonzom, V., Livine, E.R., Smerlak, M., Speziale, S.: Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model. Nucl. Phys. B 804, 507–526 (2008). arXiv:0802.3983 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Barrett, J.W., Fairbairn, W.J., Hellmann, F.: Quantum gravity asymptotics from the SU(2) 15j symbol. Int. J. Mod. Phys. A 25, 2897–2916 (2010). arXiv:0912.4907 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Puchta, J.: Asymptotic of Lorentzian Polyhedra Propagator. arXiv:1307.4747
  58. 58.
    Donà, P.: Infrared divergences in the EPRL-FK Spin Foam model. arXiv:1803.00835 (in preparation)
  59. 59.
    Fanizza, M., Martin-Dussaud, P., Speziale, S.: Asymptotics of \(SL(2, {\mathbb{C}})\) tensor invariants (in preparation)Google Scholar
  60. 60.
    Perez, A.: Statistical and entanglement entropy for black holes in quantum geometry, Phys. Rev. D90(8), 084015 (2014). arXiv:1405.7287. [Addendum: Phys. Rev.D90,no.8,089907(2014)]
  61. 61.
    Bianchi, E., Guglielmon, J., Hackl, L., Yokomizo, N.: Loop expansion and the bosonic representation of loop quantum gravity. Phys. Rev. D 94(8), 086009 (2016). arXiv:1609.02219 ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Feller, A., Livine, E.R.: Quantum surface and intertwiner dynamics in loop quantum gravity. Phys. Rev. D 95(12), 124038 (2017). arXiv:1703.01156 ADSCrossRefGoogle Scholar
  63. 63.
    Chirco, G., Mele, F.M., Oriti, D., Vitale, P.: Fisher metric, geometric entanglement and spin networks, arXiv:1703.05231
  64. 64.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). arXiv:gr-qc/0607039 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Bahr, B., Steinhaus, S.: Investigation of the spinfoam path integral with quantum cuboid intertwiners. Phys. Rev. D 93(10), 104029 (2016). arXiv:1508.07961 ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Johansson, H.T., Forssén, C.: Fast and accurate evaluation of wigner 3j, 6j, and 9j symbols using prime factorisation and multi-word integer arithmetic. SIAM J. Sci. Stat. Comput. 38, A376–A384 (2016). arXiv:1504.08329 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ., Univ. de Toulon, CNRS, CPT, UMR 7332MarseilleFrance
  2. 2.Sapienza University of RomeRomeItaly

Personalised recommendations