Advertisement

Boosted cylindrical magnetized Kaluza–Klein wormhole

Research Article

Abstract

In this work, we consider a vacuum solution of Kaluza–Klein theory with cylindrical symmetry. We investigate the physical properties of the solution as viewed in four dimensional spacetime, which turns out to be a stationary, cylindrical wormhole supported by a scalar field and a magnetic field oriented along the wormhole. We then apply a boost to the five dimensional solution along the extra dimension, and perform the Kaluza–Klein reduction. As a result, we show that the new solution is still a wormhole with a radial electric field and a magnetic field stretched along the wormhole throat.

Keywords

Kaluza–Klein theory Magnetic wormhole Exact solutions 

Notes

Acknowledgements

The authors would like to thank the anonymous referee for helpful comments. N.R. Acknowledges the support of Shahid Beheshti University.

References

  1. 1.
    Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73 (1935)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013). arXiv:hep-th/1306.0533
  4. 4.
    Misner, C.W., Wheeler, J.A.: Classical physics as geometry: gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Ann. Phys. 2, 525 (1957)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Misner, C.W.: Wormhole initial conditions. Phys. Rev. 118, 1110 (1960)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Cvetic, M., Gibbons, G. W., Pope, C. N.: Super-geometrodynamics. JHEP. 03, 029 (2015). arXiv:hep-th/1411.1084
  7. 7.
    Virgo, LIGO Scientific collaboration, Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:hep-th/1602.03837
  8. 8.
    Hawking, S.W.: Phys. Rev. D 37, 904 (1988)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dzhunushaliev, V., Folomeev, V.: Mod. Phys. Lett. A 29, 1450025 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Coule, D.H.: Class. Quantum Grav. 9, 2353 (1992)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Coleman, S.: Nucl. Phys. B 307, 867 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Coleman, S.: Nucl. Phys. B 310, 643 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Klebanov, I., Susskind, L., Banks, T.: Nucl. Phys. B 317, 665 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    Morris, M., Thorne, K., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    Visser, M.: Lorentzian wormholes: from Einstein to Hawking. AIP Press (1996)Google Scholar
  16. 16.
    Bronnikov, K.: Scalar-tensor theory and scalar charge. Acta Phys. Polon. B 4, 251 (1973)MathSciNetGoogle Scholar
  17. 17.
    Ellis, H.G.: Ether flow through a drainhole—a particle model in general relativity. J. Math. Phys. 14, 104 (1973)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kanti, P., Kleihaus, B., Kunz, J.: Wormholes in Dilatonic Einstein–Gauss–Bonnet theory. Phys. Rev. Lett. 107, 271101 (2011). arXiv:gr-qc/1108.3003
  19. 19.
    Sushkov, S. V., Korolev, R.:“Scalar wormholes with nonminimal derivative coupling”, Class. Quant. Grav. 29, 085008 (2012) arXiv:gr-qc/1111.3415
  20. 20.
    Sushkov, S.V., Volkov, M.S.: Giant wormholes in ghost-free bigravity theory. JCAP 1506, 017 (2015) arXiv:gr-qc/1502.03712
  21. 21.
    Bronnikov, K., Kim, S.-W.: Possible wormholes in a brane world. Phys. Rev. D. 67, 064027 (2003) arXiv:gr-qc/0212112
  22. 22.
    Kaluza, T.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 966 (1921)Google Scholar
  23. 23.
    Klein, O.: Z. Phys. 37, 895 (1926)ADSCrossRefGoogle Scholar
  24. 24.
    Gen, S.Y., et al.: Phys. Rev. D 44, 1330 (1991)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Chodos, A., Detweiler, S.: Gen. Relativ. Gravit. 14, 87989 (1982)CrossRefGoogle Scholar
  26. 26.
    Clement, G.: Gen. Relativ. Gravit. 16, 477489 (1984)Google Scholar
  27. 27.
    Vacaru, S.I., Singleton, D.: J. Math. Phys. 43, 35833602 (2002)CrossRefGoogle Scholar
  28. 28.
    Vacaru, S.I., Singleton, D., Botan, V.A., Dotenco, D.A.: Phys. Lett. B 519, 249259 (2001)CrossRefGoogle Scholar
  29. 29.
    Aminova, A.V., Chumarov, P.I.: Phys. Rev. D 88, 044005 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Hashemi, S.S., Riazi, N.: Kaluza–Klein magnetized cylindrical wormhole and its gravitational lensing. Gen. Relativ. Gravit. 48, 130 (2016). arXiv:hep-th/1511.0387
  31. 31.
    Sorkin, R.D.: Kaluza–Klein monopole. Phys. Rev. Lett. B 51, 87 (1983)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Gross, D.J., Perry, M.J.: Magnetic monopoles in Kaluza–Klein theory. Nucl. Phys. B 226, 29 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    Castillo-Felisola, O., Corral, C., del Pino, S., Simón Ramírez, F.: Kaluza–Klein cosmology from five-dimensional Lovelock–Cartan theory. Phys. Rev. D 94, 124020 (2016). arXiv:hep-th/1609.09045
  34. 34.
    Horowitz, G.T., Wiseman, T.: General black holes in Kaluza–Klein theory. arXiv:1107.5563
  35. 35.
    Carroll, S.M.: Spacetime and geometry. An introduction to general relativity. Pearson Publications (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShahid Beheshti University, G.C.Evin, TehranIran

Personalised recommendations