Advertisement

Extending applicability of bimetric theory: chameleon bigravity

  • Antonio De Felice
  • Shinji Mukohyama
  • Jean-Philippe Uzan
Letter

Abstract

This article extends bimetric formulations of massive gravity to make the mass of the graviton to depend on its environment. This minimal extension offers a novel way to reconcile massive gravity with local tests of general relativity without invoking the Vainshtein mechanism. On cosmological scales, it is argued that the model is stable and that it circumvents the Higuchi bound, hence relaxing the constraints on the parameter space. Moreover, with this extension the strong coupling scale is also environmentally dependent in such a way that it is kept sufficiently higher than the expansion rate all the way up to the very early universe, while the present graviton mass is low enough to be phenomenologically interesting. In this sense the extended bigravity theory serves as a partial UV completion of the standard bigravity theory. This extension is very generic and robust and a simple specific example is described.

Keywords

Bimetric theory Dark energy Massive gravity 

Notes

Acknowledgements

The authors thank Michele Oliosi and Yota Watanabe for useful comments. SM thanks warm hospitality at IAP, where this work was initiated during his stay. JPU thanks YITP for hospitality. ADF was supported by JSPS KAKENHI Grant Numbers 16K05348, 16H01099. The work of SM was supported by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) Nos. 24540256, 17H02890, 17H06359, 17H06357, and by World Premier International Research Center Initiative (WPI), MEXT, Japan. The work of JPU is made in the ILP LABEX (under reference ANR-10-LABX-63) was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02.

References

  1. 1.
    de Rham, C.: Living Rev. Relativ. 17, 7 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Schmidt-May, A., von Strauss, M.: J. Phys. A 49(18), 183001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hassan, S.F., Rosen, R.A.: JHEP 1202, 126 (2012)  https://doi.org/10.1007/JHEP02(2012)126 [arXiv:1109.3515 [hep-th]]
  4. 4.
    Comelli, D., Crisostomi, M., Pilo, L.: JHEP 1206, 085 (2012)  https://doi.org/10.1007/JHEP06(2012)085 [arXiv:1202.1986 [hep-th]]
  5. 5.
    Koennig, F., Akrami, Y., Amendola, L., Motta, M., Solomon, A.R.: Phys. Rev. D 90, 124014 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Lagos, M., Ferreira, P.G.: JCAP 1412, 026 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    De Felice, A., Gumrukcuoglu, A.E., Mukohyama, S., Tanahashi, N., Tanaka, T.: JCAP 1406, 037 (2014). [arXiv:1404.0008 [hep-th]]CrossRefGoogle Scholar
  8. 8.
    Akrami, Y., Hassan, S.F., Knnig, F., Schmidt-May, A., Solomon, A.R.: Phys. Lett. B 748, 37 (2015). [arXiv:1503.07521 [gr-qc]]ADSCrossRefGoogle Scholar
  9. 9.
    Vainshtein, A.I.: Phys. Lett. B 39, 393 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    Deffayet, C., Dvali, G.R., Gabadadze, G., Vainshtein, A.I.: Phys. Rev. D 65, 044026 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Babichev, E., Deffayet, C.: Class. Quant. Grav. 30, 184001 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    De Felice, A., Nakamura, T., Tanaka, T.: Prog. Theor. Exp. Phys. 2014, 043E1 (2014) [1304.3920]Google Scholar
  13. 13.
    Khoury, J., Weltman, A.: Phys. Rev. Lett. 93, 171104 (2004). [astro-ph/0309300]ADSCrossRefGoogle Scholar
  14. 14.
    Khoury, J., Weltman, A.: Phys. Rev. D 69, 044026 (2004). [astro-ph/0309411]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Higuchi, A.: Nucl. Phys. B 282, 397 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Murata, J., Tanaka, S.: Class. Quant. Grav. 32(3), 033001 (2015)  https://doi.org/10.1088/0264-9381/32/3/033001 [arXiv:1408.3588 [hep-ex]]
  17. 17.
    Hoskins, J.K., Newman, R.D., Spero, R., Schultz, J.: Phys. Rev. D 32, 3084 (1985).  https://doi.org/10.1103/PhysRevD.32.3084 ADSCrossRefGoogle Scholar
  18. 18.
    Fasiello, M., Tolley, A.J.: JCAP 1312, 002 (2013). [arXiv:1308.1647 [hep-th]]ADSCrossRefGoogle Scholar
  19. 19.
    Gumrukcuoglu, A.E., Mukohyama, S., Sotiriou, T.P.: Phys. Rev. D 94(6), 064001 (2016), [arXiv:1606.00618 [hep-th]]
  20. 20.
    D’Amico, G., Gabadadze, G., Hui, L., Pirtskhalava, D.: Phys. Rev. D 87, 064037 (2013)  https://doi.org/10.1103/PhysRevD.87.064037. [arXiv:1206.4253 [hep-th]]
  21. 21.
    Huang, Q.G., Piao, Y.S., Zhou, S.Y.: Phys. Rev. D 86, 124014 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Leon, G., Saavedra, J., Saridakis, E.N.: Class. Quant. Grav. 30, 135001 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Hinterbichler, K., Stokes, J., Trodden, M.: Phys. Lett. B 725, 1 (2013)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Gumrukcuoglu, A.E., Hinterbichler, K., Lin, C., Mukohyama, S., Trodden, M.: Phys. Rev. D 88(2), 024023 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Cusin, G., Durrer, R., Guarato, P., Motta, M.: JCAP 1604(04), 051 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Uzan, J.P.: Living Rev. Rel. 14, 2 (2011)  https://doi.org/10.12942/lrr-2011-2. [arXiv:1009.5514 [astro-ph.CO]]
  27. 27.
    De Felice, A., Mukohyama, S., Oliosi, M., Watanabe, Y.: arXiv:1711.04655 [hep-th], to appear in Phys. Rev. D

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antonio De Felice
    • 1
  • Shinji Mukohyama
    • 1
    • 2
  • Jean-Philippe Uzan
    • 3
    • 4
  1. 1.Center for Gravitational Physics, Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced StudyThe University of TokyoKashiwaJapan
  3. 3.Institut d’Astrophysique de Paris, CNRS UMR 7095Université Pierre and Marie Curie - Paris VIParisFrance
  4. 4.Institut Lagrange de ParisSorbonne UniversitésParisFrance

Personalised recommendations