Advertisement

Behavior of a spin-1/2 massive charged particle in Schwarzschild immersed in an electromagnetic universe

Research Article
  • 86 Downloads

Abstract

The Dirac equation is considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic field. Due to the presence of electromagnetic field from the surroundings, the interaction with the spin-1/2 massive charged particle is considered. The equations of the spin-1/2 massive charged particle are separated into radial and angular equations by adopting the Newman–Penrose formalism. The angular equations obtained are similar to the Schwarzschild geometry. For the radial equations we manage to obtain the one dimensional Schrödinger-type wave equations with effective potentials. Finally, we study the behavior of the potentials by plotting them as a function of radial distance and expose the effect of the external parameter, charge and the frequency of the particle on them.

Keywords

Schwarzschild metric coupled to a uniform external electromagnetic field Interaction with the spin-1/2 massive charged particle Radial wave equation Quantum aspect 

Notes

Acknowledgements

I would like to thank the referees for their valuable comments.

References

  1. 1.
    Halilsoy, M.: Gen. Relativ. Gravit. 25, 275 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Halilsoy, M.: Gen. Relativ. Gravit. 25, 975 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Alekseev, G.A., Garcia, A.A.: Phys. Rev. D 53, 1853 (1996)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Robinson, I.: Bull. Acad. Pol. Sci. 7, 351 (1959)Google Scholar
  5. 5.
    Bertotti, B.: Phys. Rev. 116, 1331 (1959)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Halilsoy, M., Al-Badawi, A.: Class. Quantum Grav. 12, 3013 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Halilsoy, M., Al-Badawi, A.: IL Nuovo Cimento B 113, 761 (1998)ADSGoogle Scholar
  8. 8.
    Jin, W.M.: Class. Quantum Grav. 15, 3163 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Semiz, I.: Phys. Rev. D 46, 5414 (1992)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Mukhopadhyay, B.: Ind. J. Phys. B 73, 855 (1999)Google Scholar
  11. 11.
    Mukhopadhyay, B.: Class. Quantum Grav. 17, 2017 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Zecca, A.: Int. J. Theor. Phys. 45, 12 (2006)Google Scholar
  13. 13.
    Zecca, A.: IL Nuovo Cimento B 121, 943 (2007)ADSGoogle Scholar
  14. 14.
    Cebeci, H., Őzdemir, N.: Class. Quantum Grav. 30, 175005 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Birkandan, T., Hortaçsu, M.: J. Math. Phys. 48, 092301 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Belgiorno, F., Cacciatori, S.L.: J. Math. Phys. 51, 033517 (2010)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Finster, F., Smoller, J., Yau, S.T.: J. Math. Phys. 41, 2173 (2000)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Winklmeier, M., Yamadan, O.: J. Math. Phys. 47, 102503 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kokkotas, K.D., Schmidt, B.G.: Living Rev. Rel. 2, 2 (1999). [gr-qc/9909058]CrossRefGoogle Scholar
  20. 20.
    Nollert, H.P.: Class. Quantum Grav. 16, R159 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011). [arXiv:1102.4014 [gr-qc]]ADSCrossRefGoogle Scholar
  22. 22.
    Wang, B.: Braz. J. Phys. 35, 1029 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Schutz, B.F., Will, C.M.: Astrophys. J. 291, L33 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    Iyer, S., Will, C.M.: Phys. Rev. D 35, 3621 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    Al-Badawi, A., Owaidat, M.Q.: Gen. Rel. Grav. 49, 110 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Ovgun, A.: Int. J. Theor. Phys. 55(6), 2919–2927 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes Clarendon. Oxford University Press, London (1983)MATHGoogle Scholar
  28. 28.
    Tand, N.E., Penrose, R.: J. Math. Phys. 3, 566 (1962)ADSCrossRefGoogle Scholar
  29. 29.
    Chakrabarti, S.K.: Proc. R. Soc. A 391, 27 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    Newman, E., Penrose, R.: J. Math. Phys. 7, 863 (1966)ADSCrossRefGoogle Scholar
  31. 31.
    Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarsan, E.C.G.: J. Math. Phys. 8, 2155 (1967)ADSCrossRefGoogle Scholar
  32. 32.
    Davydov, A.M.: Quantum Mechanics, 2nd edn. Pergamon, Oxford (1976)Google Scholar
  33. 33.
    Mathews, J., Walker, R.L.: Mathematical Methods of Physics, 2nd edn. Benjamin-Cummings, New York (1970)MATHGoogle Scholar
  34. 34.
    Mukhopadhyay, B., Chakrabarti, S.K.: Class. Quantum Grav. 16, 3165 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAl-Hussein Bin Talal UniversityMa’anJordan

Personalised recommendations