Existence and stability of circular orbits in general static and spherically symmetric spacetimes

  • Junji Jia
  • Jiawei Liu
  • Xionghui Liu
  • Zhongyou Mo
  • Xiankai Pang
  • Yaoguang Wang
  • Nan Yang
Research Article
  • 59 Downloads

Abstract

The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large r will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that three SSS spacetimes whose metric function is not completely known will allow the existence of timelike and/or null COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.

Keywords

Static spacetime Spherically symmetric spacetime Circular orbit Fixed point 

Notes

Acknowledgements

The work of J. Jia, J. Liu, X. Liu and X. Pang are supported by the NNSF China 11504276 & 11547310, MST China 2014GB109004, Chinese SRFDP 20130141120079 and NSF Hubei ZRY2014000988 /2014CFB695. The work of N. Yang is supported by the NNSF China 31571797 & 31401649.

References

  1. 1.
    Jebsen, J.T.: Arkiv för Matematik Astronomi och Fysik. 15, 1–9 (1921)Google Scholar
  2. 2.
    Birkhoff, G.D.: Relativity and Modern Physics. Havard University Press, Cambridge (1923)MATHGoogle Scholar
  3. 3.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1975)MATHGoogle Scholar
  4. 4.
    Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998).  https://doi.org/10.1016/S0010-4655(98)00130-1. arXiv:gr-qc/9809013 ADSCrossRefGoogle Scholar
  5. 5.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein’s field equations. Cambridge University Press, Cambridge. page 231 Table 15.1 and page 252, Table 16.2 (2009)Google Scholar
  6. 6.
    Abramowicz, M.A., Jaroszynski, M., Kato, S., Lasota, J.P., Rozanska, A., Sadowski, A.: Astron. Astrophys. 521, A15 (2010).  https://doi.org/10.1051/0004-6361/201014467. arXiv:1003.3887 [astro-ph.HE]ADSCrossRefGoogle Scholar
  7. 7.
    Chakraborty, C.: Eur. Phys. J. C 74(99), 2759 (2014).  https://doi.org/10.1140/epjc/s10052-014-2759-9. arXiv:1307.4698 [gr-qc]ADSCrossRefGoogle Scholar
  8. 8.
    Ono, T., Suzuki, T., Fushimi, N., Yamada, K., Asada, H.: Europhys. Lett. 111, 30008 (2015).  https://doi.org/10.1209/0295-5075/111/30008. arXiv:1508.00101 [gr-qc]CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Cornish, N.J., Levin, J.J.: Class. Quantum Gravity 20, 1649 (2003).  https://doi.org/10.1088/0264-9381/20/9/304. arXiv:gr-qc/0304056 ADSCrossRefGoogle Scholar
  11. 11.
    Blanchet, L.: Living Rev. Rel. 17, 2 (2014).  https://doi.org/10.12942/lrr-2014-2. arXiv:1310.1528 [gr-qc]CrossRefGoogle Scholar
  12. 12.
    Bambi, C., Freese, K.: Phys. Rev. D 79, 043002 (2009).  https://doi.org/10.1103/PhysRevD.79.043002. arXiv:0812.1328 [astro-ph]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Pradhan, P., Majumdar, P.: Phys. Lett. A 375, 474 (2011).  https://doi.org/10.1016/j.physleta.2010.11.015. arXiv:1001.0359 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Johannsen, T., Psaltis, D.: Astrophys. J. 716, 187 (2010).  https://doi.org/10.1088/0004-637X/716/1/187. arXiv:1003.3415 [astro-ph.HE]ADSCrossRefGoogle Scholar
  15. 15.
    Johannsen, T., Psaltis, D.: Astrophys. J. 718, 446 (2010).  https://doi.org/10.1088/0004-637X/718/1/446. arXiv:1005.1931 [astro-ph.HE]ADSCrossRefGoogle Scholar
  16. 16.
    Broderick, A .E., Johannsen, T., Loeb, A., Psaltis, D.: Astrophys. J. 784, 7 (2014).  https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE]ADSCrossRefGoogle Scholar
  17. 17.
    Yunes, N., Pretorius, F.: Phys. Rev. D 79, 084043 (2009).  https://doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669 [gr-qc]ADSCrossRefGoogle Scholar
  18. 18.
    Barausse, E., Jacobson, T., Sotiriou, T.P.: Phys. Rev. D 83, 124043 (2011).  https://doi.org/10.1103/PhysRevD.83.124043. arXiv:1104.2889 [gr-qc]ADSCrossRefGoogle Scholar
  19. 19.
    Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011).  https://doi.org/10.1103/RevModPhys.83.793. arXiv:1102.4014 [gr-qc]ADSCrossRefGoogle Scholar
  20. 20.
    Yagi, K., Yunes, N., Tanaka, T.: Phys. Rev. D 86, 044037 (2012). Erratum: [Phys. Rev. D 89, 049902 (2014)].  https://doi.org/10.1103/PhysRevD.89.049902,  https://doi.org/10.1103/PhysRevD.86.044037. arXiv:1206.6130 [gr-qc]
  21. 21.
    Palit, A., Panchenko, A., Migranov, N.G., Bhadra, A., Nandi, K.K.: Int. J. Theor. Phys. 48, 1271 (2009).  https://doi.org/10.1007/s10773-008-9899-3. [arXiv:0808.3239 [gr-qc]]CrossRefGoogle Scholar
  22. 22.
    Cardoso, V., Miranda, A.S., Berti, E., Witek, H., Zanchin, V.T.: Phys. Rev. D 79, 064016 (2009).  https://doi.org/10.1103/PhysRevD.79.064016. [arXiv:0812.1806 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Dean, B.H.: arXiv:1312.7501 [gr-qc]
  25. 25.
    Bronnikov, Kirill A., Rubin, Sergey G.: Black Holes, Cosmology and Extra Dimensions. World Scientific, Singapore (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Hartle, James B.: Gravity: An Introduction to Einstein’s General Relativity. Addison-Wesley, Boston (2003)Google Scholar
  27. 27.
  28. 28.
    Konoplya, R.A., Stuchlík, Z.: Phys. Lett. B 771, 597 (2017).  https://doi.org/10.1016/j.physletb.2017.06.015. arXiv:1705.05928 [gr-qc]ADSCrossRefGoogle Scholar
  29. 29.
    Stuchlík, Z., Hledík, S., Novotny, J.: Phys. Rev. D 94(10), 103513 (2016).  https://doi.org/10.1103/PhysRevD.94.103513. arXiv:1611.05327 [gr-qc]ADSCrossRefGoogle Scholar
  30. 30.
    Stuchlík, Z., Schee, J., Toshmatov, B., Hladík, J., Novotny, J.: JCAP 1706(06), 056 (2017)  https://doi.org/10.1088/1475-7516/2017/06/056. arXiv:1704.07713 [gr-qc]
  31. 31.
    Pugliese, D., Quevedo, H., Ruffini, R.: Phys. Rev. D 83, 024021 (2011).  https://doi.org/10.1103/PhysRevD.83.024021. arXiv:1012.5411 [astro-ph.HE]ADSCrossRefGoogle Scholar
  32. 32.
    Tangherlini, F.R.: Nuovo Cim. 27, 636 (1963).  https://doi.org/10.1007/BF02784569 ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hackmann, E., Kagramanova, V., Kunz J., Lammerzahl, C.: Phys. Rev. D 78, 124018 (2008). Erratum: [Phys. Rev. 79, 029901 (2009)] Addendum: [Phys. Rev. D 79(2), 029901 (2009)].  https://doi.org/10.1103/PhysRevD.79.029901,  https://doi.org/10.1103/PhysRevD.78.124018,  https://doi.org/10.1103/PhysRev.79.029901. arXiv:0812.2428 [gr-qc]
  34. 34.
  35. 35.
    DeWitt, C., DeWitt, B.S.: Black Holes (Les Houches 1972), p. 246. Gordon & Breach, New York (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Artificial Micro- and Nano-structuresWuhan UniversityWuhanChina
  2. 2.School of Physics and TechnologyWuhan UniversityWuhanChina
  3. 3.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Glyn O. Phillips Hydrocolloid Research CentreHubei University of TechnologyWuhanChina

Personalised recommendations