Advertisement

Scalar field coupling to Einstein tensor in regular black hole spacetime

  • Chi Zhang
  • Chen Wu
Research Article

Abstract

In this paper, we study the perturbation property of a scalar field coupling to Einstein’s tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant \(\eta \) imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein’s tensor in the regular black hole spacetimes by the 3rd order WKB method.

Keywords

Quasinormal modes Scalar field coupling to Einstein’s tensor Regular black hole 

Notes

Acknowledgements

This work is supported partially by the Major State Basic Research Development Program in China (No. 2014CB845402).

References

  1. 1.
    Frolov, V.P., Novikov, I.D.: Black Hole Physics: Basic Concept and New Developments. Kluwer Academic, Dordrecht (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Vishveshwara, C.V.: Nature 227, 936 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    Konoplya, R.A., Fontana, R.D.B.: Phys. Lett. B 659, 375 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brito, R., Cardoso, V., Pani, P.: Phys. Rev. D 89, 104045 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Konoplya, R.A., Zhidenko, A.V.: Phys. Lett. B 609, 377 (2005)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hod, S.: Phys. Rev. D 91, 044047 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Brito, R., Cardoso, V., Pani, P.: arXiv:1501.06570v2
  8. 8.
    Berti, E., Cardoso, V., Yoshida, S.: Phys. Rev. D 69, 124018 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Betti, E., Kokkotas, K.D.: Phys. Rev. D 67, 064020 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Wu, C., Xu, R.: Eur. Phys. J. C 75, 391 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Zhu, Z., Zhang, S.J., Pellicer, C.E., Wang, B., Abdalla, E.: Phys. Rev. D 90, 044042 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Konoplya, R.A.: Phys. Rev. D 66, 044009 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, B., Lin, C.Y., Abdalla, E.: Phys. Lett. B 481, 79 (2000)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, B., Abdalla, E., Mann, R.B.: Phys. Rev. D 65, 084006 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, B., Lin, C.Y., Molina, C.: Phys. Rev. D 70, 064025 (2004)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Birmingham, D., Sachs, I., Solodukhin, S.N.: Phys. Rev. Lett. 88, 151301 (2002)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Birmingham, D.: Phys. Rev. D 64, 064024 (2001)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Cardoso, V., Lemos, J.P.S.: Phys. Rev. D 64, 084017 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Cardoso, V., Lemos, J.P.S.: Class. Quantum. Gravity 18, 5257 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Hod, S.: Phy. Rev. Lett. 81, 4293 (1998)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Berti, E., Cardoso, V., Starinets, A.O.: Class. Quantum Gravity 26, 163001 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Konoplya, R.A., Zhidenko, A.V.: Rev. Mod. Phys. 83, 793 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Berti, E., Cardoso, V., Will, C.M.: Phys. Rev. D 73, 064030 (2006)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Abbott, B.P., et al.: Phys. Rev. Lett. 116, 131103 (2016)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Chandrasekar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)Google Scholar
  27. 27.
    Bardeen, J.: Proceedings of GR5, Tiflis, U.S.S.R. (1968)Google Scholar
  28. 28.
    Ayón-Beato, E., García, A.: Phys. Lett. B 493, 149 (2000)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Bronnikov, K.A.: Phys. Rev. D 63, 044005 (2001)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Berej, W., Matyjasek, J., Tryniecki, D., Woronowicz, M.: Gen. Relativ. Gravit. 38, 885 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Dymnikova, I.: Class. Quantum Gravity 21, 4417 (2004)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Ayón-Beato, E., Garća, A.: Phys. Rev. Lett. 80, 5056 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Eiroa, E.F., Sendra, C.M.: Class. Quantum Gravity 28, 085008 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Hollenstein, L., Lobo, F.S.N.: Phys. Rev. D 78, 124007 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Moreno, C., Sarbach, O.: Phys. Rev. D 67, 024028 (2003)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Fernando, S., Correa, J.: Phys. Rev. D 86, 064039 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Flachi, A., Lemos, J.P.S.: Phys. Rev. D 87, 024034 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Li, J., Ma, H., Lin, K.: Phys. Rev. D 88, 064001 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Li, J., Lin, K., Wen, H.: Adv. High Energy Phys. 2017, 5234214 (2017)Google Scholar
  41. 41.
    Lin, K., Li, J., Yang, N.: Gen. Relativ. Gravit. 43, 1889 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Li, J., Lin, K., Yang, N.: Eur. Phys. J. C 75, 131 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Amendola, L.: Phys. Lett. B 301, 175 (1993)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Sushkov, S.V.: Phys. Rev. D 80, 103505 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Gao, C.J.: arXiv:1002.4035
  46. 46.
    Chen, S., Jing, J.: arXiv:1005.5601
  47. 47.
    Chen, S., Jing, J.: Phys. Rev. D 82, 084006 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Blázquez-Salcedo, J.L. et al.: arXiv:1609.01286

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations