Skip to main content
Log in

Origin of Hawking radiation: firewall or atmosphere?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation is the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon can be supported by the infinite Tolman temperature at the horizon. In an exactly soluble model, we explicitly show that the firewall necessarily emerges out of the Unruh vacuum so that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. We also show that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, the firewall from the infinite Tolman temperature and the Hawking radiation from the atmosphere turn out to be compatible, once we waive the claim that the Hawking radiation in the Unruh vacuum originates from the infinitely blueshifted outgoing excitations at the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. Susskind, L., Thorlacius, L., Uglum, J.: The Stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743–3761 (1993). [arXiv:hep-th/9306069]

    Article  ADS  MathSciNet  Google Scholar 

  3. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 02, 062 (2013). [arXiv:1207.3123]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Braunstein, S.L., Pirandola, S., Zyczkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110, 101301 (2013). [arXiv:0907.1190]

    Article  ADS  Google Scholar 

  5. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993). [arXiv:hep-th/9306083]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bousso, R.: Complementarity is not enough. Phys. Rev. D 87, 124023 (2013). [arXiv:1207.5192]

    Article  ADS  Google Scholar 

  7. Nomura, Y., Varela, J., Weinberg, S.J.: Complementarity endures: no firewall for an infalling observer. JHEP 03, 059 (2013). [arXiv:1207.6626]

    Article  ADS  Google Scholar 

  8. Susskind, L.: Singularities, Firewalls, and Complementarity. [arXiv:1208.3445]

  9. Hossenfelder, S.: Comment on the Black Hole Firewall. [arXiv:1210.5317]

  10. Giddings, S.B.: Nonviolent information transfer from black holes: a field theory parametrization. Phys. Rev. D 88, 024018 (2013). [arXiv:1302.2613]

    Article  ADS  Google Scholar 

  11. Almheiri, A., Marolf, D., Polchinski, J., Stanford, D., Sully, J.: An apologia for firewalls. JHEP 1309, 018 (2013). [arXiv:1304.6483]

    Article  ADS  Google Scholar 

  12. Hutchinson, J., Stojkovic, D.: Icezones Instead of Firewalls: Extended Entanglement Beyond the Event Horizon and Unitary Evaporation of a Black Hole. [arXiv:1307.5861]

  13. Freivogel, B.: Energy and information near Black hole horizons. JCAP 1407, 041 (2014). [arXiv:1401.5340]

    Article  ADS  Google Scholar 

  14. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  15. Unruh, W.G.: Dumb holes and the effects of high frequencies on black hole evaporation. [arXiv:gr-qc/9409008]

  16. Casadio, R., Mersini-Houghton, L.: Short distance signatures in cosmology: why not in black holes? Int. J. Mod. Phys. A 19, 1395–1412 (2004). [arXiv:hep-th/0208050]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Israel, W.: Shenanigans at the Black Hole Horizon: Pair Creation or Boulware Accretion? [arXiv:1504.02419]

  18. Giddings, S.B.: Hawking radiation, the Stefan–Boltzmann law, and unitarization. Phys. Lett. B 754, 39–42 (2016). [arXiv:1511.08221]

    Article  ADS  Google Scholar 

  19. Page, D.N.: Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D 13, 198–206 (1976)

    Article  ADS  Google Scholar 

  20. Giddings, S.B.: Black hole information, unitarity, and nonlocality. Phys. Rev. D 74, 106005 (2006). [arXiv:hep-th/0605196]

    Article  ADS  MathSciNet  Google Scholar 

  21. Tolman, R.C.: On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 35, 904–924 (1930)

    Article  ADS  MATH  Google Scholar 

  22. Hartle, J.B., Hawking, S.W.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188–2203 (1976)

    Article  ADS  Google Scholar 

  23. Israel, W.: Thermo field dynamics of black holes. Phys. Lett. A 57, 107–110 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gim, Y., Kim, W.: A quantal Tolman temperature. Eur. Phys. J. C 75, 549 (2015). [arXiv:1508.00312]

    Article  ADS  Google Scholar 

  25. Deser, S., Duff, M.J., Isham, C.J.: Nonlocal conformal anomalies. Nucl. Phys. B 111, 45 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Christensen, S.M., Fulling, S.A.: Trace anomalies and the Hawking effect. Phys. Rev. D 15, 2088–2104 (1977)

    Article  ADS  Google Scholar 

  27. Wald, R.M.: Gravitation, thermodynamics, and quantum theory. Class. Quant. Grav. 16, A177–A190 (1999). [arXiv:gr-qc/9901033]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Eune, M., Gim, Y., Kim, W.: Something special at the event horizon. Mod. Phys. Lett. A 29, 1450215 (2014). [arXiv:1401.3501]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Callan Jr., C.G., Giddings, S.B., Harvey, J.A., Strominger, A.: Evanescent black holes. Phys. Rev. D 45, 1005–1009 (1992). [arXiv:hep-th/9111056]

    Article  ADS  MathSciNet  Google Scholar 

  30. Boulware, D.G.: Quantum field theory in Schwarzschild and Rindler spaces. Phys. Rev. D 11, 1404 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  31. Boschi-Filho, H., Natividade, C.P.: Anomalies in curved space-time at finite temperature. Phys. Rev. D 46, 5458–5466 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Visser, M.: Gravitational vacuum polarization. 3: energy conditions in the (\(1+1\)) Schwarzschild space-time. Phys. Rev. D 54, 5123–5128 (1996). [arXiv:gr-qc/9604009]

    Article  ADS  MathSciNet  Google Scholar 

  33. Singleton, D., Wilburn, S.: Hawking radiation, unruh radiation and the equivalence principle. Phys. Rev. Lett. 107, 081102 (2011). [arXiv:1102.5564]

    Article  ADS  Google Scholar 

  34. Hawking, S.W.: Information preservation and weather forecasting for black holes. [arXiv:1401.5761]

  35. Visser, M.: Physical observability of horizons. Phys. Rev. D 90, 127502 (2014). [arXiv:1407.7295]

    Article  ADS  Google Scholar 

  36. Mersini-Houghton, L.: Backreaction of Hawking radiation on a gravitationally collapsing star I: black holes? Phys. Lett. B 738, 61–67 (2014). [arXiv:1406.1525]

    Article  ADS  Google Scholar 

  37. Mersini-Houghton, L., Pfeiffer, H.P.: Back-Reaction of the Hawking Radiation Flux on a Gravitationally Collapsing Star II. [arXiv:1409.1837]

  38. Nomura, Y., Salzetta, N.: Why Firewalls Need Not Exist. [arXiv:1602.07673]

Download references

Acknowledgements

I have benefited from discussions with M. Eune, Y. Gim, and E. J. Son, and especially thank W. Israel for introducing his helpful paper for improvement of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wontae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W. Origin of Hawking radiation: firewall or atmosphere?. Gen Relativ Gravit 49, 15 (2017). https://doi.org/10.1007/s10714-016-2179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2179-2

Keywords

Navigation