Advertisement

The Fock space of loopy spin networks for quantum gravity

  • Christoph Charles
  • Etera R. Livine
Research Article

Abstract

In the context of the coarse-graining of loop quantum gravity, we introduce loopy and tagged spin networks, which generalize the standard spin network states to account explicitly for non-trivial curvature and torsion. Both structures relax the closure constraints imposed at the spin network vertices. While tagged spin networks merely carry an extra spin at every vertex encoding the overall closure defect, loopy spin networks allow for an arbitrary number of loops attached to each vertex. These little loops can be interpreted as local excitations of the quantum gravitational field and we discuss the statistics to endow them with. The resulting Fock space of loopy spin networks realizes new truncation of loop quantum gravity, allowing to formulate its graph-changing dynamics on a fixed background graph plus local degrees of freedom attached to the graph nodes. This provides a framework for re-introducing a non-trivial background quantum geometry around which we would study the effective dynamics of perturbations. We study how to implement the dynamics of topological BF theory in this framework. We realize the projection on flat connections through holonomy constraints and we pay special attention to their often overlooked non-trivial flat solutions defined by higher derivatives of the \(\delta \)-distribution.

Keywords

Loop quantum gravity Spin networks Coarse-graining Closure constraint Holonomy constraints BF theory 

Notes

Acknowledgments

C.C. would like to thank Michel Fruchart and Dimitri Cobb for their keen insights and useful discussions with them.

References

  1. 1.
    Rovelli, C.: Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)Google Scholar
  2. 2.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  3. 3.
    Gambini, R., Pullin, J.: A First Course in Loop Quantum Gravity. Oxford University Press, Oxford (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Barbero G, J.F.: Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507–5510 (1995). arXiv:gr-qc/9410014 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Immirzi, G.: Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177–L181 (1997). arXiv:gr-qc/9612030 ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Thiemann, T.: Anomaly—free formulation of nonperturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B 380, 257–264 (1996). arXiv:gr-qc/9606088 ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Thiemann, T.: Quantum spin dynamics (QSD). Class. Quantum Gravity 15, 839–873 (1998). arXiv:gr-qc/9606089 ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Thiemann, T.: Quantum spin dynamics (QSD). 2. Class. Quantum Gravity 15, 875–905 (1998). arXiv:gr-qc/9606090 ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Thiemann, T.: The Phoenix project: master constraint program for loop quantum gravity. Class. Quantum Gravity 23, 2211–2248 (2006). arXiv:gr-qc/0305080 ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Alesci, E.: Regularized Hamiltonians and spinfoams. J. Phys. Conf. Ser. 360, 012041 (2012). arXiv:1110.6150 ADSCrossRefGoogle Scholar
  12. 12.
    Alesci, E., Assanioussi, M., Lewandowski, J., Mkinen, I.: Hamiltonian operator for loop quantum gravity coupled to a scalar field. Phys. Rev. D 91(12), 124067 (2015). arXiv:1504.02068 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Assanioussi, M., Lewandowski, J., Mkinen, I.: New scalar constraint operator for loop quantum gravity. Phys. Rev. D 92(4), 044042 (2015). arXiv:1506.00299 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bonzom, V., Laddha, A.: Lessons from toy-models for the dynamics of loop quantum gravity. SIGMA 8, 009 (2012). arXiv:1110.2157 MathSciNetMATHGoogle Scholar
  15. 15.
    Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136–149 (2008). arXiv:0711.0146 ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett. 92, 60008 (2010). arXiv:1008.0354 ADSCrossRefGoogle Scholar
  17. 17.
    Vidotto, F., Rovelli, C.: Covariant Loop Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2014)Google Scholar
  18. 18.
    Dupuis, M., Livine, E.R.: Holomorphic simplicity constraints for 4D spinfoam models. Class. Quantum Gravity 28, 215022 (2011). arXiv:1104.3683 ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Speziale, S., Wieland, W.M.: The twistorial structure of loop-gravity transition amplitudes. Phys. Rev. D 86, 124023 (2012). arXiv:1207.6348 ADSCrossRefGoogle Scholar
  20. 20.
    Wieland, W.M.: Hamiltonian spinfoam gravity. Class. Quantum Gravity 31, 025002 (2014). arXiv:1301.5859 ADSCrossRefMATHGoogle Scholar
  21. 21.
    Livine, E.R.: The spinfoam framework for quantum gravity. PhD Thesis, Lyon, IPN (2010). arXiv:1101.5061
  22. 22.
    Perez, A.: The spin foam approach to quantum gravity. Living Rev. Rel. 16, 3 (2013). arXiv:1205.2019 MATHGoogle Scholar
  23. 23.
    Bianchi, E., Hellmann, F.: The construction of spin foam vertex amplitudes. SIGMA 9, 008 (2013). arXiv:1207.4596 MathSciNetMATHGoogle Scholar
  24. 24.
    Koslowski, T., Sahlmann, H.: Loop quantum gravity vacuum with nondegenerate geometry. SIGMA 8, 026 (2012). arXiv:1109.4688 MathSciNetMATHGoogle Scholar
  25. 25.
    Dittrich, B., Geiller, M.: A new vacuum for loop quantum gravity. Class. Quantum Gravity 32(11), 112001 (2015). arXiv:1401.6441 ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Bahr, B., Dittrich, B., Geiller, M.: A new realization of quantum geometry. arXiv:1506.08571
  27. 27.
    Oriti, D.: Group field theory as the 2nd quantization of loop quantum gravity. arXiv:1310.7786
  28. 28.
    Rivasseau, V.: Quantum gravity and renormalization: the tensor track. AIP Conf. Proc. 1444, 18–29 (2011). arXiv:1112.5104 ADSGoogle Scholar
  29. 29.
    Rivasseau, V.: The tensor track, III. Fortsch. Phys. 62, 81–107 (2014). arXiv:1311.1461 ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Carrozza, S.: Tensorial methods and renormalization in group field theories. PhD Thesis, Orsay, LPT (2013). arXiv:1310.3736
  31. 31.
    Carrozza, S.: Group field theory in dimension \(4-\epsilon \). Phys. Rev. D 91(6), 065023 (2015). arXiv:1411.5385 ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Livine, E.R., Terno, D.R.: Reconstructing quantum geometry from quantum information: area renormalisation, coarse-graining and entanglement on spin networks. arXiv:gr-qc/0603008
  33. 33.
    Livine, E.R.: Deformation operators of spin networks and coarse-graining. arXiv:1310.3362
  34. 34.
    Ashtekar, A., Lewandowski, J.: Projective techniques and functional integration for Gauge theories. J. Math. Phys. 36, 2170–2191 (1995). arXiv:gr-qc/9411046 ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Ashtekar, A., Lewandowski, J.: Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys. 17, 191–230 (1995). arXiv:hep-th/9412073 ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy C* algebras. arXiv:gr-qc/9311010
  37. 37.
    Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–622 (1995). arXiv:gr-qc/9411005 ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Rovelli, C., Smolin, L.: Spin networks and quantum gravity. Phys. Rev. D 52, 5743–5759 (1995). arXiv:gr-qc/9505006 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Freidel, L., Speziale, S.: Twisted geometries: a geometric parametrisation of SU(2) phase space. Phys. Rev. D 82, 084040 (2010). arXiv:1001.2748 ADSCrossRefGoogle Scholar
  40. 40.
    Dupuis, M., Ryan, J.P., Speziale, S.: Discrete gravity models and loop quantum gravity: a short review. SIGMA 8, 052 (2012). arXiv:1204.5394 MathSciNetMATHGoogle Scholar
  41. 41.
    Knizhnik, V., Polyakov, A.M., Zamolodchikov, A.: Fractal structure of 2D quantum gravity. Mod. Phys. Lett. A 3, 819 (1988)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Freidel, L., Livine, E.R.: Spin networks for noncompact groups. J. Math. Phys. 44, 1322–1356 (2003). arXiv:hep-th/0205268 ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Holst, S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966–5969 (1996). arXiv:gr-qc/9511026 ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Samuel, J.: Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity? Class. Quantum Gravity 17, L141–L148 (2000). arXiv:gr-qc/0005095 ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Alexandrov, S.: On choice of connection in loop quantum gravity. Phys. Rev. D 65, 024011 (2002). arXiv:gr-qc/0107071 ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Geiller, M., Lachieze-Rey, M., Noui, K., Sardelli, F.: A Lorentz-covariant connection for canonical gravity. SIGMA 7, 083 (2011). arXiv:1103.4057 MathSciNetMATHGoogle Scholar
  47. 47.
    Geiller, M., Lachieze-Rey, M., Noui, K.: A new look at Lorentz-covariant loop quantum gravity. Phys. Rev. D 84, 044002 (2011). arXiv:1105.4194 ADSCrossRefMATHGoogle Scholar
  48. 48.
    Charles, C., Livine, E.R.: Ashtekar–Barbero holonomy on the hyperboloid: Immirzi parameter as a cut-off for quantum gravity. arXiv:1507.00851
  49. 49.
    Freidel, L., Ziprick, J.: Spinning geometry = Twisted geometry. Class. Quantum Gravity 31(4), 045007 (2014). arXiv:1308.0040 ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Dupuis, M., Girelli, F.: Quantum hyperbolic geometry in loop quantum gravity with cosmological constant. Phys. Rev. D 87(12), 121502 (2013). arXiv:1307.5461 ADSCrossRefGoogle Scholar
  51. 51.
    Bonzom, V., Dupuis, M., Girelli, F., Livine, E.R.: Deformed phase space for 3d loop gravity and hyperbolic discrete geometries. arXiv:1402.2323
  52. 52.
    Dupuis, M., Girelli, F., Livine, E.R.: Deformed spinor networks for loop gravity: towards hyperbolic twisted geometries. Gen. Relativ. Gravit. 46(11), 1802 (2014). arXiv:1403.7482 ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Charles, C., Livine, E.R.: Closure constraints for hyperbolic tetrahedra. Class. Quantum Gravity 32(13), 135003 (2015). arXiv:1501.00855 ADSMathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Haggard, H.M., Han, M., Kamiński, W., Riello, A.: SL(2, C) Chern–Simons theory, a non-planar graph operator, and 4D loop quantum gravity with a cosmological constant: semiclassical geometry, Nucl. Phys. B900, 1–79 (2015). arXiv:1412.7546 ADSCrossRefMATHGoogle Scholar
  55. 55.
    Haggard, H.M., Han, M., Riello, A.: Encoding curved tetrahedra in face holonomies: a phase space of shapes from group-valued moment maps. arXiv:1506.03053
  56. 56.
    Haggard, H.M., Han, M., Kamiński, W., Riello, A.: Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks. Phys. Lett. B 752, 258–262 (2016). arXiv:1509.00458 ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Pithis, A.G., Ruiz Euler, H.-C.: Anyonic statistics and large horizon diffeomorphisms for loop quantum gravity black holes. Phys. Rev. D 91, 064053 (2015). arXiv:1402.2274 ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Yang, J., Ma, Y.: Quasi-local energy in loop quantum gravity. Phys. Rev. D 80, 084027 (2009). arXiv:0812.3554 ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Korotkin, D., Samtleben, H.: Canonical quantization of cylindrical gravitational waves with two polarizations. Phys. Rev. Lett. 80, 14–17 (1998). arXiv:gr-qc/9705013 ADSMathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Ashtekar, A., Bicak, J., Schmidt, B.G.: Behavior of Einstein–Rosen waves at null infinity. Phys. Rev. D 55, 687–694 (1997). arXiv:gr-qc/9608041 ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Borja, E.F., Freidel, L., Garay, I., Livine, E.R.: U(N) tools for loop quantum gravity: the return of the spinor. Class. Quantum Gravity 28, 055005 (2011). arXiv:1010.5451 ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Bonzom, V., Livine, E.R., Speziale, S.: Recurrence relations for spin foam vertices. Class. Quantum Gravity 27, 125002 (2010). arXiv:0911.2204 ADSMathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Bonzom, V., Freidel, L.: The Hamiltonian constraint in 3d Riemannian loop quantum gravity. Class. Quantum Gravity 28, 195006 (2011). arXiv:1101.3524 ADSMathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Bonzom, V., Dupuis, M., Girelli, F.: Towards the Turaev-Viro amplitudes from a Hamiltonian constraint. Phys. Rev. D 90(10), 104038 (2014). arXiv:1403.7121 ADSCrossRefGoogle Scholar
  65. 65.
    Freidel, L., Krasnov, K.: Discrete space–time volume for three-dimensional BF theory and quantum gravity. Class. Quantum Gravity 16, 351–362 (1999). arXiv:hep-th/9804185 ADSMathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Bonzom, V., Livine, E.R.: A new hamiltonian for the topological BF phase with spinor networks. J. Math. Phys. 53, 072201 (2012). arXiv:1110.3272 ADSMathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Bonzom, V., Dittrich, B.: Dirac’s discrete hypersurface deformation algebras. Class. Quantum Gravity 30, 205013 (2013). arXiv:1304.5983 ADSMathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Feller, A., Livine, E.R.: Ising spin network states for loop quantum gravity: a toy model for phase transitions. Class. Quantum Gravity 33(6), 065005 (2016). arXiv:1509.05297 ADSMathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Alesci, E., Cianfrani, F.: Quantum-reduced loop gravity: cosmology. Phys. Rev. D 87(8), 083521 (2013). arXiv:1301.2245 ADSMathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Noui, K., Perez, A.: Three-dimensional loop quantum gravity: physical scalar product and spin foam models. Class. Quantum Gravity 22, 1739 (2005). doi: 10.1088/0264-9381/22/9/017. arXiv:gr-qc/0402110
  71. 71.
    Livine, E.R.: Projected spin networks for Lorentz connection: linking spin foams and loop gravity. Class. Quantum Gravity 19, 5525–5542 (2002). arXiv:gr-qc/0207084 ADSMathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Dupuis, M., Livine, E.R.: Lifting SU(2) spin networks to projected spin networks. Phys. Rev. D 82, 064044 (2010). arXiv:1008.4093 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique, ENS de Lyon, CNRS (UMR 5672)Université de LyonLyonFrance

Personalised recommendations