# The Fock space of loopy spin networks for quantum gravity

- 94 Downloads
- 10 Citations

## Abstract

In the context of the coarse-graining of loop quantum gravity, we introduce loopy and tagged spin networks, which generalize the standard spin network states to account explicitly for non-trivial curvature and torsion. Both structures relax the closure constraints imposed at the spin network vertices. While tagged spin networks merely carry an extra spin at every vertex encoding the overall closure defect, loopy spin networks allow for an arbitrary number of loops attached to each vertex. These little loops can be interpreted as local excitations of the quantum gravitational field and we discuss the statistics to endow them with. The resulting Fock space of loopy spin networks realizes new truncation of loop quantum gravity, allowing to formulate its graph-changing dynamics on a fixed background graph plus local degrees of freedom attached to the graph nodes. This provides a framework for re-introducing a non-trivial background quantum geometry around which we would study the effective dynamics of perturbations. We study how to implement the dynamics of topological BF theory in this framework. We realize the projection on flat connections through holonomy constraints and we pay special attention to their often overlooked non-trivial flat solutions defined by higher derivatives of the \(\delta \)-distribution.

## Keywords

Loop quantum gravity Spin networks Coarse-graining Closure constraint Holonomy constraints BF theory## Notes

### Acknowledgments

C.C. would like to thank Michel Fruchart and Dimitri Cobb for their keen insights and useful discussions with them.

## References

- 1.Rovelli, C.: Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)Google Scholar
- 2.Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
- 3.Gambini, R., Pullin, J.: A First Course in Loop Quantum Gravity. Oxford University Press, Oxford (2011)CrossRefMATHGoogle Scholar
- 4.Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett.
**57**, 2244–2247 (1986)ADSMathSciNetCrossRefGoogle Scholar - 5.Barbero G, J.F.: Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D
**51**, 5507–5510 (1995). arXiv:gr-qc/9410014 ADSMathSciNetCrossRefGoogle Scholar - 6.Immirzi, G.: Real and complex connections for canonical gravity. Class. Quantum Gravity
**14**, L177–L181 (1997). arXiv:gr-qc/9612030 ADSMathSciNetCrossRefMATHGoogle Scholar - 7.Thiemann, T.: Anomaly—free formulation of nonperturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B
**380**, 257–264 (1996). arXiv:gr-qc/9606088 ADSMathSciNetCrossRefMATHGoogle Scholar - 8.Thiemann, T.: Quantum spin dynamics (QSD). Class. Quantum Gravity
**15**, 839–873 (1998). arXiv:gr-qc/9606089 ADSMathSciNetCrossRefMATHGoogle Scholar - 9.Thiemann, T.: Quantum spin dynamics (QSD). 2. Class. Quantum Gravity
**15**, 875–905 (1998). arXiv:gr-qc/9606090 ADSMathSciNetCrossRefMATHGoogle Scholar - 10.Thiemann, T.: The Phoenix project: master constraint program for loop quantum gravity. Class. Quantum Gravity
**23**, 2211–2248 (2006). arXiv:gr-qc/0305080 ADSMathSciNetCrossRefMATHGoogle Scholar - 11.Alesci, E.: Regularized Hamiltonians and spinfoams. J. Phys. Conf. Ser.
**360**, 012041 (2012). arXiv:1110.6150 ADSCrossRefGoogle Scholar - 12.Alesci, E., Assanioussi, M., Lewandowski, J., Mkinen, I.: Hamiltonian operator for loop quantum gravity coupled to a scalar field. Phys. Rev. D
**91**(12), 124067 (2015). arXiv:1504.02068 ADSMathSciNetCrossRefGoogle Scholar - 13.Assanioussi, M., Lewandowski, J., Mkinen, I.: New scalar constraint operator for loop quantum gravity. Phys. Rev. D
**92**(4), 044042 (2015). arXiv:1506.00299 ADSMathSciNetCrossRefGoogle Scholar - 14.Bonzom, V., Laddha, A.: Lessons from toy-models for the dynamics of loop quantum gravity. SIGMA
**8**, 009 (2012). arXiv:1110.2157 MathSciNetMATHGoogle Scholar - 15.Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B
**799**, 136–149 (2008). arXiv:0711.0146 ADSMathSciNetCrossRefMATHGoogle Scholar - 16.Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett.
**92**, 60008 (2010). arXiv:1008.0354 ADSCrossRefGoogle Scholar - 17.Vidotto, F., Rovelli, C.: Covariant Loop Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2014)Google Scholar
- 18.Dupuis, M., Livine, E.R.: Holomorphic simplicity constraints for 4D spinfoam models. Class. Quantum Gravity
**28**, 215022 (2011). arXiv:1104.3683 ADSMathSciNetCrossRefMATHGoogle Scholar - 19.Speziale, S., Wieland, W.M.: The twistorial structure of loop-gravity transition amplitudes. Phys. Rev. D
**86**, 124023 (2012). arXiv:1207.6348 ADSCrossRefGoogle Scholar - 20.Wieland, W.M.: Hamiltonian spinfoam gravity. Class. Quantum Gravity
**31**, 025002 (2014). arXiv:1301.5859 ADSCrossRefMATHGoogle Scholar - 21.Livine, E.R.: The spinfoam framework for quantum gravity. PhD Thesis, Lyon, IPN (2010). arXiv:1101.5061
- 22.Perez, A.: The spin foam approach to quantum gravity. Living Rev. Rel.
**16**, 3 (2013). arXiv:1205.2019 MATHGoogle Scholar - 23.Bianchi, E., Hellmann, F.: The construction of spin foam vertex amplitudes. SIGMA
**9**, 008 (2013). arXiv:1207.4596 MathSciNetMATHGoogle Scholar - 24.Koslowski, T., Sahlmann, H.: Loop quantum gravity vacuum with nondegenerate geometry. SIGMA
**8**, 026 (2012). arXiv:1109.4688 MathSciNetMATHGoogle Scholar - 25.Dittrich, B., Geiller, M.: A new vacuum for loop quantum gravity. Class. Quantum Gravity
**32**(11), 112001 (2015). arXiv:1401.6441 ADSMathSciNetCrossRefMATHGoogle Scholar - 26.Bahr, B., Dittrich, B., Geiller, M.: A new realization of quantum geometry. arXiv:1506.08571
- 27.Oriti, D.: Group field theory as the 2nd quantization of loop quantum gravity. arXiv:1310.7786
- 28.Rivasseau, V.: Quantum gravity and renormalization: the tensor track. AIP Conf. Proc.
**1444**, 18–29 (2011). arXiv:1112.5104 ADSGoogle Scholar - 29.Rivasseau, V.: The tensor track, III. Fortsch. Phys.
**62**, 81–107 (2014). arXiv:1311.1461 ADSMathSciNetCrossRefMATHGoogle Scholar - 30.Carrozza, S.: Tensorial methods and renormalization in group field theories. PhD Thesis, Orsay, LPT (2013). arXiv:1310.3736
- 31.Carrozza, S.: Group field theory in dimension \(4-\epsilon \). Phys. Rev. D
**91**(6), 065023 (2015). arXiv:1411.5385 ADSMathSciNetCrossRefGoogle Scholar - 32.Livine, E.R., Terno, D.R.: Reconstructing quantum geometry from quantum information: area renormalisation, coarse-graining and entanglement on spin networks. arXiv:gr-qc/0603008
- 33.Livine, E.R.: Deformation operators of spin networks and coarse-graining. arXiv:1310.3362
- 34.Ashtekar, A., Lewandowski, J.: Projective techniques and functional integration for Gauge theories. J. Math. Phys.
**36**, 2170–2191 (1995). arXiv:gr-qc/9411046 ADSMathSciNetCrossRefMATHGoogle Scholar - 35.Ashtekar, A., Lewandowski, J.: Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys.
**17**, 191–230 (1995). arXiv:hep-th/9412073 ADSMathSciNetCrossRefMATHGoogle Scholar - 36.Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy C* algebras. arXiv:gr-qc/9311010
- 37.Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B
**442**, 593–622 (1995). arXiv:gr-qc/9411005 ADSMathSciNetCrossRefMATHGoogle Scholar - 38.Rovelli, C., Smolin, L.: Spin networks and quantum gravity. Phys. Rev. D
**52**, 5743–5759 (1995). arXiv:gr-qc/9505006 ADSMathSciNetCrossRefGoogle Scholar - 39.Freidel, L., Speziale, S.: Twisted geometries: a geometric parametrisation of SU(2) phase space. Phys. Rev. D
**82**, 084040 (2010). arXiv:1001.2748 ADSCrossRefGoogle Scholar - 40.Dupuis, M., Ryan, J.P., Speziale, S.: Discrete gravity models and loop quantum gravity: a short review. SIGMA
**8**, 052 (2012). arXiv:1204.5394 MathSciNetMATHGoogle Scholar - 41.Knizhnik, V., Polyakov, A.M., Zamolodchikov, A.: Fractal structure of 2D quantum gravity. Mod. Phys. Lett. A
**3**, 819 (1988)ADSMathSciNetCrossRefGoogle Scholar - 42.Freidel, L., Livine, E.R.: Spin networks for noncompact groups. J. Math. Phys.
**44**, 1322–1356 (2003). arXiv:hep-th/0205268 ADSMathSciNetCrossRefMATHGoogle Scholar - 43.Holst, S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D
**53**, 5966–5969 (1996). arXiv:gr-qc/9511026 ADSMathSciNetCrossRefGoogle Scholar - 44.Samuel, J.: Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity? Class. Quantum Gravity
**17**, L141–L148 (2000). arXiv:gr-qc/0005095 ADSMathSciNetCrossRefMATHGoogle Scholar - 45.Alexandrov, S.: On choice of connection in loop quantum gravity. Phys. Rev. D
**65**, 024011 (2002). arXiv:gr-qc/0107071 ADSMathSciNetCrossRefGoogle Scholar - 46.Geiller, M., Lachieze-Rey, M., Noui, K., Sardelli, F.: A Lorentz-covariant connection for canonical gravity. SIGMA
**7**, 083 (2011). arXiv:1103.4057 MathSciNetMATHGoogle Scholar - 47.Geiller, M., Lachieze-Rey, M., Noui, K.: A new look at Lorentz-covariant loop quantum gravity. Phys. Rev. D
**84**, 044002 (2011). arXiv:1105.4194 ADSCrossRefMATHGoogle Scholar - 48.Charles, C., Livine, E.R.: Ashtekar–Barbero holonomy on the hyperboloid: Immirzi parameter as a cut-off for quantum gravity. arXiv:1507.00851
- 49.Freidel, L., Ziprick, J.: Spinning geometry = Twisted geometry. Class. Quantum Gravity
**31**(4), 045007 (2014). arXiv:1308.0040 ADSMathSciNetCrossRefMATHGoogle Scholar - 50.Dupuis, M., Girelli, F.: Quantum hyperbolic geometry in loop quantum gravity with cosmological constant. Phys. Rev. D
**87**(12), 121502 (2013). arXiv:1307.5461 ADSCrossRefGoogle Scholar - 51.Bonzom, V., Dupuis, M., Girelli, F., Livine, E.R.: Deformed phase space for 3d loop gravity and hyperbolic discrete geometries. arXiv:1402.2323
- 52.Dupuis, M., Girelli, F., Livine, E.R.: Deformed spinor networks for loop gravity: towards hyperbolic twisted geometries. Gen. Relativ. Gravit.
**46**(11), 1802 (2014). arXiv:1403.7482 ADSMathSciNetCrossRefMATHGoogle Scholar - 53.Charles, C., Livine, E.R.: Closure constraints for hyperbolic tetrahedra. Class. Quantum Gravity
**32**(13), 135003 (2015). arXiv:1501.00855 ADSMathSciNetCrossRefMATHGoogle Scholar - 54.Haggard, H.M., Han, M., Kamiński, W., Riello, A.: SL(2, C) Chern–Simons theory, a non-planar graph operator, and 4D loop quantum gravity with a cosmological constant: semiclassical geometry, Nucl. Phys.
**B900**, 1–79 (2015). arXiv:1412.7546 ADSCrossRefMATHGoogle Scholar - 55.Haggard, H.M., Han, M., Riello, A.: Encoding curved tetrahedra in face holonomies: a phase space of shapes from group-valued moment maps. arXiv:1506.03053
- 56.Haggard, H.M., Han, M., Kamiński, W., Riello, A.: Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks. Phys. Lett. B
**752**, 258–262 (2016). arXiv:1509.00458 ADSMathSciNetCrossRefGoogle Scholar - 57.Pithis, A.G., Ruiz Euler, H.-C.: Anyonic statistics and large horizon diffeomorphisms for loop quantum gravity black holes. Phys. Rev. D
**91**, 064053 (2015). arXiv:1402.2274 ADSMathSciNetCrossRefGoogle Scholar - 58.Yang, J., Ma, Y.: Quasi-local energy in loop quantum gravity. Phys. Rev. D
**80**, 084027 (2009). arXiv:0812.3554 ADSMathSciNetCrossRefGoogle Scholar - 59.Korotkin, D., Samtleben, H.: Canonical quantization of cylindrical gravitational waves with two polarizations. Phys. Rev. Lett.
**80**, 14–17 (1998). arXiv:gr-qc/9705013 ADSMathSciNetCrossRefMATHGoogle Scholar - 60.Ashtekar, A., Bicak, J., Schmidt, B.G.: Behavior of Einstein–Rosen waves at null infinity. Phys. Rev. D
**55**, 687–694 (1997). arXiv:gr-qc/9608041 ADSMathSciNetCrossRefGoogle Scholar - 61.Borja, E.F., Freidel, L., Garay, I., Livine, E.R.: U(N) tools for loop quantum gravity: the return of the spinor. Class. Quantum Gravity
**28**, 055005 (2011). arXiv:1010.5451 ADSMathSciNetCrossRefMATHGoogle Scholar - 62.Bonzom, V., Livine, E.R., Speziale, S.: Recurrence relations for spin foam vertices. Class. Quantum Gravity
**27**, 125002 (2010). arXiv:0911.2204 ADSMathSciNetCrossRefMATHGoogle Scholar - 63.Bonzom, V., Freidel, L.: The Hamiltonian constraint in 3d Riemannian loop quantum gravity. Class. Quantum Gravity
**28**, 195006 (2011). arXiv:1101.3524 ADSMathSciNetCrossRefMATHGoogle Scholar - 64.Bonzom, V., Dupuis, M., Girelli, F.: Towards the Turaev-Viro amplitudes from a Hamiltonian constraint. Phys. Rev. D
**90**(10), 104038 (2014). arXiv:1403.7121 ADSCrossRefGoogle Scholar - 65.Freidel, L., Krasnov, K.: Discrete space–time volume for three-dimensional BF theory and quantum gravity. Class. Quantum Gravity
**16**, 351–362 (1999). arXiv:hep-th/9804185 ADSMathSciNetCrossRefMATHGoogle Scholar - 66.Bonzom, V., Livine, E.R.: A new hamiltonian for the topological BF phase with spinor networks. J. Math. Phys.
**53**, 072201 (2012). arXiv:1110.3272 ADSMathSciNetCrossRefMATHGoogle Scholar - 67.Bonzom, V., Dittrich, B.: Dirac’s discrete hypersurface deformation algebras. Class. Quantum Gravity
**30**, 205013 (2013). arXiv:1304.5983 ADSMathSciNetCrossRefMATHGoogle Scholar - 68.Feller, A., Livine, E.R.: Ising spin network states for loop quantum gravity: a toy model for phase transitions. Class. Quantum Gravity
**33**(6), 065005 (2016). arXiv:1509.05297 ADSMathSciNetCrossRefMATHGoogle Scholar - 69.Alesci, E., Cianfrani, F.: Quantum-reduced loop gravity: cosmology. Phys. Rev. D
**87**(8), 083521 (2013). arXiv:1301.2245 ADSMathSciNetCrossRefMATHGoogle Scholar - 70.Noui, K., Perez, A.: Three-dimensional loop quantum gravity: physical scalar product and spin foam models. Class. Quantum Gravity
**22**, 1739 (2005). doi: 10.1088/0264-9381/22/9/017. arXiv:gr-qc/0402110 - 71.Livine, E.R.: Projected spin networks for Lorentz connection: linking spin foams and loop gravity. Class. Quantum Gravity
**19**, 5525–5542 (2002). arXiv:gr-qc/0207084 ADSMathSciNetCrossRefMATHGoogle Scholar - 72.Dupuis, M., Livine, E.R.: Lifting SU(2) spin networks to projected spin networks. Phys. Rev. D
**82**, 064044 (2010). arXiv:1008.4093 ADSCrossRefGoogle Scholar