Charged Vaidya solution satisfies weak energy condition

  • Soumyabrata Chatterjee
  • Suman Ganguli
  • Amitabh Virmani
Research Article


The external matter stress-tensor supporting charged Vaidya solution appears to violate weak energy condition in certain region of the spacetime. Motivated by this, a new interpretation of charged Vaidya solution was proposed by Ori (Class Quant Grav 8:1559, 1991) in which the energy condition continues to be satisfied. In this construction, one glues an outgoing Vaidya solution to the original ingoing Vaidya solution provided the surface where the external stress-tensor vanishes is spacelike. We revisit this study and extend it to higher-dimensions, to AdS settings, and to higher-derivative f(R) theories. In asymptotically flat space context, we explore in detail the case when the mass function m(v) is proportional to the charge function q(v). When the proportionality constant \(\nu = q(v)/m(v)\) lies in between zero and one, we show that the surface where the external stress-tensor vanishes is spacelike and lies in between the inner and outer apparent horizons.


Classical Black Holes Charged Vaidya solution Energy conditions 



We have benefitted from our discussions with Swastik Bhattacharya, Naresh Dadhich, Arnab Kundu, Amos Ori, Sudipta Mukherji, and Sudipta Sarkar.


  1. 1.
    Ori, A.: Charged null fluid and the weak energy condition. Class. Quant. Grav. 8, 1559 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonnor, W.B., Vaidya, P.C.: Spherically symmetric radiation of charge in Einstein–Maxwell theory. Gen. Rel. Grav. 1, 127 (1970)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Lake, K., Zannias, T.: Structure of singularities in the spherical gravitational collapse of a charged null fluid. Phys. Rev. D. 43, 1798 (1991)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Sullivan, B.T., Israel, W.: The third law of black hole mechanics: what is it? Phys. Lett. A. 79, 371 (1980)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kaminaga, Y.: A dynamical model of an evaporating charged black hole and quantum instability of Cauchy horizons. Class. Quant. Grav. 7, 1135 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Caceres, E., Kundu, A., Pedraza, J.F., Tangarife, W.: Strong subadditivity, null energy condition and charged black holes. JHEP 1401, 084 (2014). [arXiv:1304.3398 [hep-th]]ADSCrossRefGoogle Scholar
  7. 7.
    Balek, V., Bičák, J., Stuchlík, Z.: The motion of charged particles in the field of rotating charged black holes and naked singularities. Astron. Inst. Czechoslov. Bull. (ISSN 0004–6248) 40(2), 65–92 (1989)Google Scholar
  8. 8.
    Balek, V., Bičák, J., Stuchlík, Z.: The motion of charged particles in the field of rotating charged black holes and naked singularities. Astron. Inst. Czechoslov. Bull. (ISSN 0004-6248) 40(3), 165 (1989)Google Scholar
  9. 9.
    Balek, V., Bičák, J., Stuchlík, Z.: The shell of incoherent charged matter falling onto a charged rotating black hole. General Relativ. Gravit. 31(1), 53–71 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Pugliese, D., Quevedo, H., Ruffini, R.: Motion of charged test particles in Reissner–Nordstrom spacetime. Phys. Rev. D. 83, 104052 (2011). doi: 10.1103/PhysRevD.83.104052. arXiv:1103.1807 [gr-qc]ADSCrossRefGoogle Scholar
  11. 11.
    Moita, A.: ‘Maxwell, Weyl, Levi-Civita, and Ricci tensors: algebraic classification in several spacetime dimensions. Master Thesis at Centro Multidisciplinar de Astrofísica (CENTRA) in the Physics Department of Instituto Superior Técnico, Lisbon, PortugalGoogle Scholar
  12. 12.
    Booth, I.: Evolutions from extremality. arXiv:1510.01759 [gr-qc]
  13. 13.
    See section 5.4 of Bojowald, Martin: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity. Cambridge University Press (2011)Google Scholar
  14. 14.
    Ghosh, S.G., Dadhich, N.: On naked singularities in higher dimensional Vaidya space-times. Phys. Rev. D. 64, 047501 (2001). doi: 10.1103/PhysRevD.64.047501. [arXiv:gr-qc/0105085]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010). doi: 10.1103/RevModPhys.82.451. [arXiv:0805.1726 [gr-qc]]ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Rel. 13, 3 (2010). doi: 10.12942/lrr-2010-3. [arXiv:1002.4928 [gr-qc]]MATHGoogle Scholar
  17. 17.
    Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rept. 505, 59 (2011). doi: 10.1016/j.physrep.2011.04.001. [arXiv:1011.0544 [gr-qc]]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Multamaki, T., Vilja, I.: Spherically symmetric solutions of modified field equations in f(R) theories of gravity. Phys. Rev. D. 74, 064022 (2006). doi: 10.1103/PhysRevD.74.064022. [arXiv:astro-ph/0606373]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Capozziello, S., Stabile, A., Troisi, A.: Spherical symmetry in f(R)-gravity. Class. Quant. Grav. 25, 085004 (2008). doi: 10.1088/0264-9381/25/8/085004. [arXiv:0709.0891 [gr-qc]]ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Bamba, K., Nojiri, S., Odintsov, S.D.: Time-dependent matter instability and star singularity in \(F(R)\) gravity. Phys. Lett. B. 698, 451 (2011). doi: 10.1016/j.physletb.2011.03.038. [arXiv:1101.2820 [gr-qc]]ADSCrossRefGoogle Scholar
  21. 21.
    Ghosh, S.G., Maharaj, S.D.: Gravitational collapse of null dust in \(f(R)\) gravity. Phys. Rev. D. 85, 124064 (2012). doi: 10.1103/PhysRevD.85.124064 ADSCrossRefGoogle Scholar
  22. 22.
    Levin, O., Ori, A.: Inner structure of an evaporating charged black hole with ingoing charged null fluid. Phys. Rev. D. 54, 2746 (1996). doi: 10.1103/PhysRevD.54.2746 ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D. 41, 1796 (1990). doi: 10.1103/PhysRevD.41.1796 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ori, A.: Inner structure of a charged black hole: an exact mass-inflation solution. Phys. Rev. Lett. 67, 789 (1991). doi: 10.1103/PhysRevLett.67.789 ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Frolov, V.P., Vilkovisky, G.A.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B. 106, 307 (1981). doi: 10.1016/0370-2693(81)90542-6 ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). doi: 10.1103/PhysRevLett.96.031103. [arXiv:gr-qc/0506126]ADSCrossRefGoogle Scholar
  27. 27.
    Frolov, V.P.: Information loss problem and a ’black hole‘ model with a closed apparent horizon. JHEP 1405, 049 (2014). doi: 10.1007/JHEP05(2014)049. [arXiv:1402.5446 [hep-th]]ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Soumyabrata Chatterjee
    • 1
  • Suman Ganguli
    • 1
  • Amitabh Virmani
    • 1
  1. 1.Institute of PhysicsBhubaneshwarIndia

Personalised recommendations