Advertisement

Spectroscopy of a weakly isolated horizon

  • Ge-Rui Chen
  • Yong-Chang Huang
Research Article
  • 52 Downloads

Abstract

The spectroscopy of a weakly isolated horizon has been investigated. We obtain an equally spaced entropy spectrum with its quantum equal to the one given by Bekenstein (Phys Rev D 7:2333, 1973). We demonstrate that the quantization of entropy and area is a generic property of horizons which exists in a wide class of spacetimes admitting weakly isolated horizons. Our method based on the tunneling method also indicates that the entropy quantum of black hole horizons is closely related to Hawking temperature.

Keywords

Weakly isolated horizon Quantization Entropy spectrum Area spectrum 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos. 11275017 and 11173028).

References

  1. 1.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefMATHGoogle Scholar
  2. 2.
    Ashtekar, A., Krishnan, B.: Living Rev. Rel. 7, 10 (2004)Google Scholar
  3. 3.
    Ashtekar, A., Beetle, C., Fairhurst, S.: Class Quant. Grav. 17, 253 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ashtekar, A., Beetle, C., Lewandowski, J.: Phys. Rev. D 64, 044016 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hod, S.: Phys. Rev. Lett. 81, 4293 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hod, S.: Gen. Relativ. Gravit. 31, 1639 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kunstatter, G.: Phys. Rev. Lett. 90, 161301 (2003)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bekenstein, J.D., Mukhanov, V.F.: Phys. Lett. B 360, 7 (1995)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Maggiore, M.: Phys. Rev. Lett. 100, 141301 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Vagenas, E.C.: JHEP 0811, 073 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Medved, A.J.M.: Class. Quant. Grav. 25, 205014 (2008)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Banerjee, R., Majhi, B.R., Vagenas, E.C.: Phys. Lett. B 686, 279 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Majhi, B.R.: Phys. Lett. B 686, 49 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Banerjee, R., Majhi, B.R., Vagenas, E.C.: Europhys. Lett. 92, 20001 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Ropotenko, K.: Phys. Rev. D 82, 044037 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Majhi, B.R., Vagenas, E.C.: Phys. Lett. B 701, 623 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Zeng, X.-X., Liu, W.-B.: Eur. Phys. J. C 72, 1987 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Chen, D., Yang, H.: Eur. Phys. J. C 72, 2027 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Li, H.-L., Lin, R.: Eur. Phys. J. C 73, 2316 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Krishnan, B.: Class. Quant. Grav. 29, 205006 (2012)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Wu, X., Gao, S.: Phys. Rev. D 75, 044027 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Wu, X., Huang, C.-G., Sun, J.-R.: Phys. Rev. D 77, 124023 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Parikh, M.K.: Gen. Relativ. Gravit. 36, 2419 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Kerner, R., Mann, R.B.: Class. Quant. Grav. 25, 095014 (2008)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Chen, G.-R., Zhou, S., Huang, Y.-C.: Int. J. Mod. Phys. D 24, 1550005 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, Y.J., Zhao, Z.: Phys. Lett. B 638, 110 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Padmanabhan, T.: Rep. Prog. Phys. 73, 046901 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  32. 32.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  33. 33.
    Nollert, H.P.: Phys. Rev. D 47, 5253 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Dreyer, O.: Phys. Rev. Lett. 90, 081301 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Barbero G, J.F., Lewandowski, J., Villaseñor, E.J.S.: Phys. Rev. D 80, 044016 (2009)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, X.D.: Fix Immirzi parameter by quasinormal modes in four and higher spacetime dimensions. arXiv:1506.05739

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of ScienceCentral South University of Forestry and TechnologyChangshaChina
  2. 2.Institute of Theoretical PhysicsBeijing University of TechnologyBeijingChina

Personalised recommendations