Electrodynamics on cosmological scales

Research Article


Maxwell’s equations cannot describe a homogeneous and isotropic universe with a uniformly distributed net charge, because the electromagnetic field tensor in such a universe must be vanishing everywhere. For a closed universe with a nonzero net charge, Maxwell’s equations always fail regardless of the spacetime symmetry and the charge distribution. The two paradoxes indicate that Maxwell’s equations need be modified to be applicable to the universe as a whole. We consider two types of modified Maxwell equations, both can address the paradoxes. One is the Proca-type equation which contains a photon mass term. This type of electromagnetic field equations can naturally arise from spontaneous symmetry breaking and the Higgs mechanism in quantum field theory, where photons acquire a mass by eating massless Goldstone bosons. However, photons loose their mass again when the symmetry is restored, and the paradoxes reappear. The other type of modified Maxwell equations, which are more attractive in our opinions, contain a term with the electromagnetic field potential vector coupled to the spacetime curvature tensor. This type of electromagnetic field equations do not introduce a new dimensional parameter and return to Maxwell’s equations in a flat or Ricci-flat spacetime. We show that the curvature-coupled term can naturally arise from the ambiguity in extending Maxwell’s equations from a flat spacetime to a curved spacetime through the “minimal substitution rule”. Some consequences of the modified Maxwell equations are investigated. The results show that for reasonable parameters the modification does not affect existing experiments and observations. However, we argue that, the field equations with a curvature-coupled term can be testable in astrophysical environments where the mass density is high or the gravity of electromagnetic radiations plays a dominant role in dynamics, e.g., the interior of neutron stars and the early universe.


Classical general relativity Maxwell’s equations Classical fields in curved spacetime Cosmology 



The author thanks an anonymous reviewer for a very good report which has helped to improve the presentation of the paper. This work was supported by the National Basic Research Program (973 Program) of China (Grant No. 2014CB845800) and the NSFC grants program (no. 11373012).


  1. 1.
    Thomson, W.: Macmillan’s Mag. 5, 388 (1862)Google Scholar
  2. 2.
    Smith, C., Wise, M.N.: Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge University Press, Cambridge (1989)Google Scholar
  3. 3.
    Planck, M.: Treatise on Thermodynamics, 1917th edn. Dover Publications, New York (2010)Google Scholar
  4. 4.
    Landsberg, P.T.: Thermodynamics with Quantum Statistical Illustrations. Interscience Publishers, New York (1961)MATHGoogle Scholar
  5. 5.
    Grandy, W.T.: Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, Oxford (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)MATHGoogle Scholar
  7. 7.
    Smolin, L.: Phys. Today 67, 38 (2014)CrossRefGoogle Scholar
  8. 8.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hawking, S.W.: Nature 248, 30 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Clifton, T., Ellis, G.F.R., Tavakol, R.: Class. Quantum Gravity 30, 125009 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Sussman, R.A., Larena, J.: Class. Quantum Gravity 32, 165012 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Norton, J.D. In: Goenner, H., et al. (eds.) The Expanding Worlds of General Relativity: Einstein Studies, vol. 7, p. 271. Birkhäuser, Boston (1999)Google Scholar
  15. 15.
    Neumann, C.: Abh. d. Kgl. Sächs. Ges. d. Wiss. zu Leipzig, math.-nat. KL. 26, 97 (1874). This is cited from R. C. Tolman, Relativity, Thermodynamics and Cosmology, Oxford University Press, Oxford (1962). However, see the comments in [14]Google Scholar
  16. 16.
    Seeliger, H.: Astron. Nachr. 137, 129 (1895)ADSCrossRefGoogle Scholar
  17. 17.
    Jeans, J.H.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929)MATHGoogle Scholar
  18. 18.
    Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)Google Scholar
  19. 19.
    Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)MATHGoogle Scholar
  20. 20.
    Green, S.R., Wald, R.M.: Phys. Rev. D 85, 063512 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Flender, S.F., Schwarz, D.J.: Phys. Rev. D 86, 063527 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)Google Scholar
  23. 23.
    Einstein, A.: Seitsber. Preuss. Akad. Wiss. Berlin, 778 (1915a)Google Scholar
  24. 24.
    Einstein, A.: Seitsber. Preuss. Akad. Wiss. Berlin, 844 (1915b)Google Scholar
  25. 25.
    Hubble, E.: Proc. Nat. Acad. Sci. 15, 168 (1929)ADSCrossRefGoogle Scholar
  26. 26.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. The Cambridge University Press, Cambridge (1975)MATHGoogle Scholar
  27. 27.
    Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)CrossRefMATHGoogle Scholar
  28. 28.
    Falco, M., Hansen, S.H., Wojtak, R., Mamon, G.A.: Mon. Not. R. Astron. Soc. Lett. 431, L6 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Sengupta, S., Pal, P.B.: Phys. Lett. B 365, 175 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Caprini, C., Ferreira, P.G.: J. Cosmol. Astropart. Phys. 02, 006 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Bressi, G., et al.: Phys. Rev. A 83, 052101 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Amole, C., et al.: Nat. Commun. 5, 3955 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Peskin, M.E., Schroeder, D.V.: An Introduction To Quantum Field Theory. Westview Press, New York (1995)Google Scholar
  34. 34.
    Ryder, L.H.: Quantum Field Theory, 2nd edn. Cambridge University Press, Cambridge (1996)CrossRefMATHGoogle Scholar
  35. 35.
    Tu, L.C., Luo, J., Gillies, G.T.: Rep. Prog. Phys. 68, 77 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Goldhaber, A.S., Nieto, M.M.: Rev. Mod. Phys. 82, 939 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Lyttleton, R.A., Bondi, H.: Proc. R. Soc. Lond. A 252, 313 (1959)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Hoyle, F.: Proc. R. Soc. Lond. A 257, 431 (1960)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Lyttleton, R.A., Bondi, H.: Proc. R. Soc. Lond. A 257, 442 (1960)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Barry, G.W.: Astrophys. J. 190, 279 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    Orito, S., Yoshimura, M.: Phys. Rev. Lett. 54, 2457 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    Brisudova, M., Kinney, W.H., Woodard, R.P.: Class. Quantum Gravity 18, 3929 (2001)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Massó, E., Rota, F.: Phys. Lett. B 545, 221 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Dolgov, A., Pelliccia, D.N.: Phys. Lett. B 650, 97 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Tsagas, C.G.: Phys. Rev. Lett. 86, 5421 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Tsagas, C.G.: Class. Quantum Gravity 22, 393 (2005)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. The Cambridge University Press, Cambridge (1984)MATHGoogle Scholar
  48. 48.
    Schwartz, M.D.: Quantum Field Theory and the Standard Model. The Cambridge University Press, Cambridge (2013)Google Scholar
  49. 49.
    Dunkley, J., et al.: 2009. Astrophys. J. Suppl. 180, 306 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud et al., arXiv:1502.01589 (2015)
  51. 51.
    Ryutov, D.D.: Plasma Phys. Controll. Fusion 49, B429 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Adelberger, E., Dvali, G., Gruzinov, A.: Phys. Rev. Lett. 98, 010402 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    de Broglie, L.: La Mécanique Ondulatoire du Photon. Une Nouvelle Théorie de la Lumière. Hermann & Cie, Paris (1940)MATHGoogle Scholar
  54. 54.
    Gintsburg, M.A.: Sov. Astron. 7, 536 (1964)ADSGoogle Scholar
  55. 55.
    Kobzarev, I.Y., Okun, L.B.: Sov. Phys. Usp. 11, 338 (1968)ADSCrossRefGoogle Scholar
  56. 56.
    Aragao de Carvalho, C., Rosa Jr., S.G.: J. Phys. A 13, 3233 (1980)ADSCrossRefGoogle Scholar
  57. 57.
    Mohling, F.: Statistical Mechanics: Methods and Applications. Wiley, New York (1983)Google Scholar
  58. 58.
    Schwabl, F.: Statistical Mechanics. Springer, Berlin (2006)MATHGoogle Scholar
  59. 59.
    Bass, L., Schrödinger, E.: Proc. R. Soc. Lond. A 232, 1 (1955)ADSCrossRefGoogle Scholar
  60. 60.
    Goldhaber, A.S., Nieto, M.M.: Rev. Mod. Phys. 43, 277 (1971)ADSCrossRefGoogle Scholar
  61. 61.
    Stueckelberg, E.C.G.: Helv. Phys. Acta 30, 209 (1957)MathSciNetGoogle Scholar
  62. 62.
    Gertsenshtein, M.E., Solovei, L.G.: JETP Lett. 9, 79 (1969)ADSGoogle Scholar
  63. 63.
    Kroll, N.M.: Phys. Rev. Lett. 26, 1395 (1971)ADSCrossRefGoogle Scholar
  64. 64.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2738 (1977)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Kavli Institute for Astronomy and AstrophysicsPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations