Orbital effects due to gravitational induction

Research Article


We study the motion of test particles in the metric of a localized and slowly rotating astronomical source, within the framework of linear gravitoelectromagnetism, grounded on a Post-Minkowskian approximation of general relativity. Special attention is paid to gravitational inductive effects due to time-varying gravitomagnetic fields. We show that, within the limits of the approximation mentioned above, there are cumulative effects on the orbit of the particles either for planetary sources or for binary systems. They turn out to be negligible.


Post-Minkowskian approximation Experimental tests of gravitational theories 



We are indebted with Prof. B. Mashhoon for useful discussion. DB thanks the ICRANet and the INFN (section of Naples) for partial support.


  1. 1.
    Abbott, B., et al.: [LIGO Collaboration], Searching for a stochastic background of gravitational waves with LIGO. Astrophys. J. 659, 918 (2007). [astro-ph/0608606]CrossRefADSGoogle Scholar
  2. 2.
    Aasi, J., et al.: [LIGO Scientific and VIRGO Collaborations], Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Phys. Rev. D 91(2), 022003 (2015). arXiv:1410.6211 [gr-qc]
  3. 3.
    Acernese, F., et al.: [VIRGO Collaboration], Advanced virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32(2), 024001 (2015). arXiv:1408.3978 [gr-qc]
  4. 4.
    Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. 1. Method and definition of reference systems. Phys. Rev. D 43, 3272 (1991)MathSciNetADSGoogle Scholar
  5. 5.
    Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. 2. Translational equations of motion. Phys. Rev. D 45, 1017 (1992)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. 3. Rotational equations of motion. Phys. Rev. D 47, 3124 (1993)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. 4: Theory of satellite motion. Phys. Rev. D 49, 618 (1994)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). [gr-qc/9811091]MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Braginsky, V.B., Caves, C.M., Thorne, K.S.: Laboratory experiments to test relativistic gravity. Phys. Rev. D 15, 2047 (1977)CrossRefADSGoogle Scholar
  10. 10.
    Mashhoon, B.: On the gravitational analogue of Larmor’s theorem. Phys. Lett. A 173, 347 (1993)CrossRefADSGoogle Scholar
  11. 11.
    Jantzen, R.T., Carini, P., Bini, D.: The many faces of gravitoelectromagnetism. Ann. Phys. 215, 1 (1992). [gr-qc/0106043]MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Bini, D., Cherubini, C., Chicone, C., Mashhoon, B.: Gravitational induction. Class. Quantum Gravity 25, 225014 (2008). arXiv:0803.0390 [gr-qc]
  13. 13.
    Poisson, E., Will, C.M.: Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  14. 14.
    Iorio, L.: General relativistic spin-orbit and spin-spin effects on the motion of rotating particles in an external gravitational field. Gen. Relativ. Gravit 44, 719 (2012). arXiv:1012.5622 [gr-qc]
  15. 15.
    Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger, Bristol (1991)MATHGoogle Scholar
  16. 16.
    Iorio, L.: Post-Newtonian direct and mixed orbital effects due to the oblateness of the central body. Int. J. Mod. Phys. D 24, 1550067 (2015). [ arXiv:1402.5947]
  17. 17.
    Ruggiero, M.L., Iorio, L.: Gravitomagnetic time-varying effects on the motion of a test particle. Gen. Relativ. Gravit 42, 2393 (2010). [ arXiv:0906.1281]
  18. 18.
    Pijpers, F.P.: Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297, 76 (1998). [astro-ph/9804258]CrossRefADSGoogle Scholar
  19. 19.
    Archinal, B.A., et al.: Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109, 101 (2011)MATHCrossRefADSGoogle Scholar
  20. 20.
    Weber, E.J., Davis Jr, L.: The angular momentum of the solar wind. Astrophys. J. 148, 217 (1967)CrossRefADSGoogle Scholar
  21. 21.
    Beck, J.G., Giles, P.: Helioseismic determination of the solar rotation axis. Astrophys. J. Lett. 621, 153 (2005)CrossRefADSGoogle Scholar
  22. 22.
    Giles, P.M.: Time-distance measurements of large-scale flows in the solar convection zone. Ph.D. Dissertation, Stanford University (1999)Google Scholar
  23. 23.
    Soffel, M., et al.: The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687 (2003). [astro-ph/0303376]CrossRefADSGoogle Scholar
  24. 24.
    Matousek, S.: The Juno new frontiers mission. Acta Astronaut. 61, 932 (2007)CrossRefADSGoogle Scholar
  25. 25.
    Petit, G., et al.: IERS conventions (2010). IERS Technical Note vol. 36, p. 1 (2010)Google Scholar
  26. 26.
    Stephenson, F.R., Morrison, L.V.: Long-term fluctuations in the earth’s rotation: 700 BC to AD 1990. Proc. R. Soc. Lond. A Mat. 351, 165 (1995)ADSGoogle Scholar
  27. 27.
    Burgay, M., et al.: An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426, 531 (2003). [astro-ph/0312071]CrossRefADSGoogle Scholar
  28. 28.
    Lyne, A.G., et al.: A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science 303, 1153 (2004). [astro-ph/0401086]CrossRefADSGoogle Scholar
  29. 29.
    Barker, B.M., O’Connell, R.F.: Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 12, 329 (1975)CrossRefADSGoogle Scholar
  30. 30.
    Boerner, G., Ehlers, J., Rudolph, E.: Relativistic spin precession in two-body systems. Astron. Astrophys. 44, 417 (1975)ADSGoogle Scholar
  31. 31.
    Breton, R.P., et al.: Relativistic spin precession in the double pulsar. Science 321, 104 (2008). arXiv:0807.2644 [astro-ph]
  32. 32.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1951)MATHGoogle Scholar
  33. 33.
    Gunn, J.E., Ostriker, J.P.: On the nature of pulsars. III. Analysis of observations. Astrophys. J. 160, 979 (1970)CrossRefADSGoogle Scholar
  34. 34.
    Lorimer, D., Kramer, M.: Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge (2005)Google Scholar
  35. 35.
    Matt, S.P., et al.: The mass-dependence of angular momentum evolution in sun-like stars. ApJ 799, L23 (2015). arXiv:1412.4786 [astro-ph]

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Istituto per le Applicazioni del Calcolo “M. Picone”CNRRomeItaly
  2. 2.Ministero dell’Istruzione, dell’Università e della RicercaBariItaly
  3. 3.Aerothermodynamics SectionESA - ESTECNoordwijkThe Netherlands

Personalised recommendations