Advertisement

Extended phase space thermodynamics and \(P-V\) criticality of charged black holes in Brans–Dicke theory

  • S. H. Hendi
  • Z. Armanfard
Research Article

Abstract

Motivated by conformal relation between dilaton gravity and Brans–Dicke theory, in this paper, we are taking into account extended phase space thermodynamics to investigate phase transition of charged black holes. We regard spherically symmetric charged black hole solutions in the presence of a scalar field in both Einstein and Jordan frames and calculate related conserved and thermodynamic quantities. Then, we study the analogy of the black hole solution with the Van der Waals liquid–gas system in the extended phase space by considering the cosmological constant proportional to thermodynamical pressure. We obtain critical values of thermodynamic coordinates and plot \(P-V\) and \(G-T\) diagrams to study the phase transition points and compare the results of dilaton gravity and Brans–Dicke theory.

Keywords

Brans–Dicke theory Extended phase space thermodynamics Charged black hole 

Notes

Acknowledgments

We would like to thank the anonymous referees for valuable suggestions and Shahram Panahiyan for reading the manuscript. We also wish to thank the Shiraz University Research Council. This work has been supported financially by Research Institute for Astronomy and Astrophysics of Maragha, Iran.

References

  1. 1.
    Gibbons, G.W., Maeda, K.: Nucl. Phys. B 298, 741 (1988)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Garfinkle, D., Horowitz, G.T., Strominger, A.: Phys. Rev. D 43, 3140 (1991)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Chan, K.C.K., Horne, J.H., Mann, R.B.: Nucl. Phys. B 447, 441 (1995)MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Chiba, T., Soda, J.: Prog. Theor. Phys. 96, 567 (1996)CrossRefADSGoogle Scholar
  5. 5.
    Cai, R.G., Myung, Y.S.: Phys. Rev. D 56, 3466 (1997)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Dehghani, M.H., Pakravan, J., Hendi, S.H.: Phys. Rev. D 74, 104014 (2006)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Hendi, S.H.: J. Math. Phys. 49, 082501 (2008)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Hendi, S.H., Katebi, R.: Eur. Phys. J. C 72, 2235 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Brans, C., Dicke, R.: Phys. Rev. 124, 925 (1961)MATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: Phys. Rev. D 51, 4208 (1995)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: Phys. Rev. D 51, 4236 (1995)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Kang, G.: Phys. Rev. D 54, 7483 (1996)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    de Oliveira, H.P., Cheb-Terrab, E.S.: Class. Quantum Gravit. 13, 425 (1996)MATHCrossRefADSGoogle Scholar
  15. 15.
    Hawking, S.W.: Commun. Math. Phys. 25, 167 (1972)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Teitelboim, Phys: Lett. B 158, 293 (1985)CrossRefADSGoogle Scholar
  17. 17.
    Creighton, J., Mann, R.B.: Phys. Rev. D 52, 4569 (1995)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Padmanabhan, T.: Class. Quantum Gravit. 19, 5387 (2002)MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Kastor, D., Ray, S., Traschen, J.: Class. Quantum Gravit. 26, 195011 (2009)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Delsate, T., Mann, R.B.: J. High Energy Phys. 02, 070 (2015)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Rajagopal, A., Kubiznak, D., Mann, R.B.: Phys. Lett. B 737, 277 (2014)Google Scholar
  22. 22.
    Dolan, B.P.: Class. Quantum Gravit. 28, 125020 (2011)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Kubiznak, D., Mann, R.B.: J. High Energy Phys. 07, 033 (2012)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Dolan, B.P.: Class. Quantum Gravit. 28, 235017 (2011)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Hendi, S.H., Vahidinia, M.H.: Phys. Rev. D 88, 084045 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Hendi, S.H., Panahiyan, S., Eslam Panah, B.: Int. J. Mod. Phys. D (accepted). arXiv:1410.0352
  27. 27.
    Hendi, S.H., Panahiyan, S., Momennia, M.: Int. J. Mod. Phys. D (accepted). arXiv:1503.03340
  28. 28.
    Hawking, S.W., Page, D.N.: Commun. Math. Phys. 87, 577 (1983)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Chamblin, A., Emparan, R., Johnson, C., Myers, R.: Phys. Rev. D 60, 64018 (1999)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Niu, C., Tian, Y., Wu, X.N.: Phys. Rev. D 85, 24017 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Sheykhi, A.: Phys. Rev. D 76, 124025 (2007)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Hansen, J., Yeom, D.H.: J. High Energy Phys. 10, 040 (2014)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Hwang, D.I., Yeom, D.H.: Class. Quantum Gravit. 27, 205002 (2010)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Dolan, B.P.: Mod. Phys. Lett. A 30, 1540002 (2015)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Cvetic, M., Gibbons, G.W., Kubiznak, D., Pope, C.N.: Phys. Rev. D 84, 024037 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Physics Department and Biruni Observatory, College of SciencesShiraz UniversityShirazIran
  2. 2.Research Institute for Astrophysics and Astronomy of Maragha (RIAAM)MaraghaIran

Personalised recommendations