Advertisement

On non-commutative correction of the Gödel-type metric

  • S. C. Ulhoa
  • A. F. Santos
  • R. G. G. Amorim
Research Article

Abstract

In this paper, we will study non-commutative corrections in the metric tensor for the Gödel-type universe, a model that has as its main characteristic the possibility of violation of causality, allowing therefore time travel. We also find that the critical radius in such a model, which eventually will determine the time travel possibility, is modified due to the non commutativity of spatial coordinates.

Keywords

Gödel universe Cosmology Non-commutative corrections 

Notes

Acknowledgments

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). A. F. S. has been suported by the CNPq Project 476166/2013-6.

References

  1. 1.
    Weyl, H.: Z. Phys. 46, 1 (1927)CrossRefADSGoogle Scholar
  2. 2.
    Douglas, M.R., Nekrasov, N.A.: Rev. Mod. Phys. 73, 977 (2001)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Connes, A., Douglas, M.R., Schwarz, A.: JHEP 9802, 003 (1998)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Seiberg, N., Witten, E.: JHEP 9909, 032 (1999)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Susskind, L.: hep-th/0101029
  6. 6.
    Mezincescu, L.: hep-th/0007046
  7. 7.
    Aschieri, P.: Fortschr. Phys. 55, 649–654 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aschieri, P.: J. Phys. Conf. Ser. 53, 799–819 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Ulhoa, S.C., Amorim, R.G.G., Santos, A.F.: GRG 46, 1760 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C.D., Okamoto, T.: Phys. Rev. Lett. 87, 141610 (2001)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)CrossRefADSGoogle Scholar
  12. 12.
    Buser, M., Kajari, E., Schleich, W.P.: New J. Phys. 15, 013063 (2013). arXiv:1303.4651 MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Mukherjee, P., Saha, A.: Phys. Rev. D74, 027702 (2006). arXiv:hep-th/0605287 [hep-th]ADSGoogle Scholar
  14. 14.
    Chaichian, M., Tureanu, A., Zet, G.: Phys. Lett. B 660, 573 (2008)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Rebouças, M., Tiomno, J.: Phys. Rev. D 28, 1251 (1983)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Furtado, C., Mariz, T., Nascimento, J.R., Petrov, A.Y., Santos, A.F.: Phys. Rev. D 79, 124039 (2009)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Furtado, C., Nascimento, J.R., Petrov, A.Y., Santos, A.F.: Phys. Lett. B 693, 494 (2010)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Rebouças, M.J., Santos, J.: Phys. Rev. D 80, 063009 (2009)CrossRefADSGoogle Scholar
  19. 19.
    Santos, A.F.: Mod. Phys. Lett. A 28, 1350141, arXiv:1308.3503
  20. 20.
    Ferst, C.J., Santos, A.F.: arXiv: arXiv:1411.1002
  21. 21.
    Fonseca-Neto, J.B., Petrov, A.Y., Rebouças, M.J.: Phys. Lett. B 725, 412 (2013). arXiv:1304.4675 MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Ulhoa, S.C., Santos, A.F., Amorim, R.G.G.: Mod. Phys. Lett. A 28, 1350039 (2013). arXiv:1303.0713 MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Santos, A.F., Ulhoa, S.C.: arXiv:1407.4322
  24. 24.
    Brecher, D., Danielsson, U.H., Gregory, J.P., Olsson, M.E.: J. High Energy Phys. 0311, 033 (2003)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Gauntlett, J.P., Gutowski, J.B., Hull, C.M., Pakis, S., Reall, H.S.: Class. Quant. Grav. 20, 4587 (2003). hep-th/0209114

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. C. Ulhoa
    • 1
  • A. F. Santos
    • 2
  • R. G. G. Amorim
    • 1
    • 3
  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de FísicaUniversidade Federal de Mato GrossoCuiabáBrazil
  3. 3.Faculdade GamaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations