Advertisement

Impact of anisotropic stresses during dissipative gravitational collapse

  • K. P. Reddy
  • M. Govender
  • S. D. Maharaj
Research Article

Abstract

We employ a perturbative scheme to study the evolution of a spherically symmetric stellar body undergoing gravitational collapse in the presence of heat dissipation and anisotropic stresses. The Bowers and Liang static model is perturbed, and its subsequent dynamical collapse is studied in the linear perturbative regime. We find that anisotropic effects brought about by the differences in the radial and tangential pressures render the core more unstable than the cooler surface layers. An analysis of the temperature profiles in the interior of the collapsing body shows that the temperature is enhanced in the presence of pressure anisotropy.

Keywords

Dissipative collapse Anisotropic stresses Causal thermodynamics 

Notes

Acknowledgments

The authors are grateful to the referees for useful and constructive comments which helped clarify the main results of the paper. We also thank Professor Luis Herrera (Escuela de Fisica, Facultad de Ciencias, Universidad Central de Venezuela) for insightful advice and suggestions in finalising this manuscript. MG and SDM thank the National Research Foundation and the University of KwaZulu Natal for financial support. SDM further acknowledges that this research is supported by the South African Research Chair Initiative of the Department of Science and Technology. KPR wishes to thank the Directorate for Research and Postgraduate Support at the Durban University of Technology, in particular Prof. S. Moyo, for a lecturer replacement grant which helped make this study possible.

References

  1. 1.
    Vaidya, P.C.: Proc. Indian Acad. Sci. A 33, 264 (1951)ADSMATHMathSciNetGoogle Scholar
  2. 2.
    Santos, N.O.: Mon. Not. R. Astron. Soc. 216, 403 (1985)CrossRefADSGoogle Scholar
  3. 3.
    De Oliveira, A.K.G., Santos, N.O.: Astrophys. J. 312, 640 (1987)CrossRefADSGoogle Scholar
  4. 4.
    Herrera, L., Le Denmat, G., Santos, N.O.: Mon. Not. R. Astron. Soc. 237, 257 (1989)CrossRefADSMATHGoogle Scholar
  5. 5.
    Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 267, 637 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Chan, R.: Astron. Astrophys. 368, 325 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Di Prisco, A., Herrera, L., Le Denmat, G., MacCallum, M.A.H., Santos, N.O.: Phys. Rev. D 76, 064017 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Eckart, C.: Phys. Rev. 58, 919 (1940)CrossRefADSGoogle Scholar
  9. 9.
    Israel, W.: Ann. Phys. NY 100, 310 (1976)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Israel, W., Stewart, J.: Phys. Lett. A 58, 213 (1976)CrossRefADSGoogle Scholar
  11. 11.
    Israel, W., Stewart, J.: Ann. Phys. NY 118, 341 (1979)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Pavón, D., Jou, D., Casas-Vázquez, J.: Ann. Inst. H Poicaré A36, 79 (1982)Google Scholar
  13. 13.
    Cattaneo, C.: Atti. Semin. Mat. Fis. Univ. Modena 3, 3 (1948)Google Scholar
  14. 14.
    Di Prisco, A., Herrera, L., Esculpi, M.: Class. Quantum Grav. 13, 1053 (1996)CrossRefADSMATHGoogle Scholar
  15. 15.
    Anile, A.M., Pavon, D., Romano, V.: The Case for Hyperbolic Theories of Dissipation in Relativistic Fluids. arXiv:gr-qc/9810014
  16. 16.
    Herrera, L., Martínez, J.: Gen. Relativ. Gravit. 30, 445 (1998)CrossRefADSMATHGoogle Scholar
  17. 17.
    Di Prisco, A., Herrera, L., Esculpi, M.: Class. Quantum Grav. 13, 1053 (1996)CrossRefADSMATHGoogle Scholar
  18. 18.
    Di Prisco, A., Herrera, L., Falcon, N., Esculpi, M., Santos, N.O.: Gen. Relativ. Gravit. 29, 1391 (1997)CrossRefADSGoogle Scholar
  19. 19.
    Govender, M., Maharaj, S.D., Maartens, R.: Class. Quantum Grav. 15, 323 (1998)CrossRefADSMATHMathSciNetGoogle Scholar
  20. 20.
    Govender, M., Maartens, R., Maharaj, S.D.: Mon. Not. R. Astron. Soc. 310, 557 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Govinder, K.S., Govender, M.: Phys. Lett. A 283, 71 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    Govender, M., Govinder, K.S.: Int. J. Theor. Phys. 41, 1797 (2002)CrossRefGoogle Scholar
  23. 23.
    Naidu, N.F., Govender, M.: J. Astrophys. Astr. 28, 167 (2007)CrossRefADSGoogle Scholar
  24. 24.
    Naidu, N.F., Govender, M., Govinder, K.S.: Int. J. Mod. Phys. D 15, 1053 (2006)CrossRefADSMATHGoogle Scholar
  25. 25.
    Rajah, S.S., Maharaj, S.D.: J. Math. Phys. 49, 012501 (2008)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Maharaj, S.D., Govender, G., Govender, M.: Pramana Phys. 77, 469 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Thirukkanesh, S., Rajah, S.S., Maharaj, S.D.: J. Math. Phys. 53, 032506 (2012)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Govender, M., Reddy, K.P., Maharaj, S.D.: Int. J. Mod. Phys. D 02, 1450013 (2014)CrossRefGoogle Scholar
  29. 29.
    Ruderman, M.: Ann. Rev. Astron. Astrophys. 10, 427 (1972)CrossRefADSGoogle Scholar
  30. 30.
    Cameron, A.G.W., Canuto, V.: In: Proceedings of the 16th Solvay Conference on Astrophysics and Gravitation: Neutron Stars: General Review, de I’Université de Bruxelles, Bruxelles (1973)Google Scholar
  31. 31.
    Uslov, V.V.: Phys. Rev. D 70, 067301 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Weber, F.: Pulsars as Astrophysical Observatories for Nuclear and Partcile Physics. IOP Publishing, Bristol (1999)Google Scholar
  33. 33.
    Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Martinez, J.: Phys. Rev. D 53, 6921 (1996)CrossRefADSGoogle Scholar
  35. 35.
    Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974)CrossRefADSGoogle Scholar
  36. 36.
    Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 34, 1793 (2002)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 35, 1435 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  38. 38.
    Chan, R.: Astrophys. Space Sci. 206, 219 (1993)CrossRefADSGoogle Scholar
  39. 39.
    Herrera, L.: Int. J. Mod. Phys. D 20, 1689 (2011)CrossRefADSMATHMathSciNetGoogle Scholar
  40. 40.
    Sharma, R., Das, S.: J. Gravit. 2103, 659605 (2013)Google Scholar
  41. 41.
    Govender, G., Govender, M., Govinder, K.S.: Int. J. Mod. Phys. D 19, 1773 (2010)CrossRefADSMATHGoogle Scholar
  42. 42.
    Govender, M., Govinder, K.S., Fleming, D.: Int. J. Theor. Phys. 51, 3399 (2012)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Herrera, L., Di Prisco, A., Ospino, J.: Gen. Relativ. Gravit. 42, 1585 (2010)CrossRefADSMATHGoogle Scholar
  44. 44.
    Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 265, 533 (1993)CrossRefADSGoogle Scholar
  45. 45.
    Chan, R., Kichenassamy, S., Le Denmat, G., Santos, N.O.: Mon. Not. R. Astron. Soc. 239, 91 (1989)CrossRefADSMATHGoogle Scholar
  46. 46.
    Herrera, L., Le Denmat, G., Santos, N.O.: Gen. Relativ. Gravit. 44, 1143 (2012)CrossRefADSMATHGoogle Scholar
  47. 47.
    Florides, P.S.: Proc. R. Soc. Lond. A. 337, 529 (1974)CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Govender, M., Govinder, K.S., Maharaj, S.D., Sharma, R., Mukherjee, S., Dey, T.K.: Int. J. Mod. Phys. D 12, 667 (2003)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Govinder, K.S., Govender, M.: Gen. Relativ. Gravit. 44, 147 (2012)CrossRefADSMATHMathSciNetGoogle Scholar
  50. 50.
    Govender, M.: Int. J. Mod. Phys. D 22, 1350049 (2013)CrossRefADSGoogle Scholar
  51. 51.
    Maartens, R.: Causal Thermodynamics in Relativity. arXiv:astro-ph/9609119
  52. 52.
    Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 287, 161 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations