Janis–Newman algorithm: simplifications and gauge field transformation

  • Harold Erbin
Research Article


The Janis–Newman algorithm is an old but very powerful tool to generate rotating solutions from static ones through a set of complex coordinate transformations. Several solutions have been derived in this way, including solutions with gauge fields. However, the transformation of the latter was so far always postulated as an ad hoc result. In this paper we propose a generalization of the procedure, extending it to the transformation of the gauge field. We also present a simplification of the algorithm due to G. Giampieri. We illustrate our prescription on the Kerr–Newman solution.


Janis–Newman algorithm Solution generating technique   Kerr–Newman metric 



I would like to thank Lucien Heurtier for many discussions, collaborations on related topics and for corrections on the draft. I am also very grateful to Tresa Bautista and Eric Huguet for having carefully read and commented the draft, and to Nick Halmagyi for interesting discussions and for bringing the original JN papers [19, 20] to my attention. This work, made within the Labex Ilp (reference Anr-10-Labx-63), was supported by French state funds managed by the Agence nationale de la recherche, as part of the programme Investissements d’avenir under the reference Anr-11-Idex-0004-02.


  1. 1.
    Adamo, T., Newman, E.T.: The Kerr–Newman metric: a review, Scholarpedia, vol. 9, p. 31791 (2014). doi: 10.4249/scholarpedia.31791
  2. 2.
    Azreg-Aïnou, M.: Comment on “Spinning loop black holes” [ arXiv:1006.0232]. Class. Quantum Gravity 28(14), 148,001 (2011). doi: 10.1088/0264-9381/28/14/148001
  3. 3.
    Azreg-Aïnou, M.: Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90(6) (2014). doi: 10.1103/PhysRevD.90.064041
  4. 4.
    Capozziello, S., De Laurentis, M., Stabile, A.: Axially symmetric solutions in \(f(R)\)-gravity. Class. Quantum Gravity 27, 165,008 (2010). doi: 10.1088/0264-9381/27/16/165008
  5. 5.
    Caravelli, F., Modesto, L.: Spinning loop black holes. Class. Quantum Gravity 27(24), 245,022 (2010). doi: 10.1088/0264-9381/27/24/245022
  6. 6.
    Demiański, M.: New Kerr-like space-time. Phys. Lett. A 42(2), 157–159 (1972). doi: 10.1016/0375-9601(72)90752-9 CrossRefADSGoogle Scholar
  7. 7.
    Drake, S.P., Szekeres, P.: An explanation of the Newman–Janis algorithm. Gen. Relativ. Gravit. 32(3), 445–457 (2000). doi: 10.1023/A:1001920232180 CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Drake, S.P., Turolla, R.: The application of the Newman–Janis algorithm in obtaining interior solutions of the Kerr metric. Gen. Relativ. Gravit. 14(7), 1883–1897 (1997). doi: 10.1088/0264-9381/14/7/021 MATHMathSciNetGoogle Scholar
  9. 9.
    Ferraro, R.: Untangling the Newman–Janis algorithm. Gen. Relativ. Gravit. 46(4) (2014). doi: 10.1007/s10714-014-1705-3
  10. 10.
    Gürses, M., Gürsey, F.: Lorentz covariant treatment of the Kerr–Schild geometry. J. Math. Phys. 16(12), 2385–2390 (1975). doi: 10.1063/1.522480 CrossRefADSGoogle Scholar
  11. 11.
    Ghosh, S.G., Maharaj, S.D., Papnoi, U.: Radiating Kerr–Newman black hole in \(f(R)\) gravity. Eur. Phys. J. C 73(6), 1–11 (2013). doi: 10.1140/epjc/s10052-013-2473-z CrossRefGoogle Scholar
  12. 12.
    Giampieri, G.: Introducing Angular Momentum into a Black Hole using Complex Variables. Gravity Research Foundation (1990).
  13. 13.
    Herrera, L., Jiménez, J.: The complexification of a nonrotating sphere: an extension of the Newman–Janis algorithm. J. Math. Phys. 23(12), 2339–2345 (1982). doi: 10.1063/1.525325 CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    Ibohal, N.: Rotating metrics admitting non-perfect fluids in general relativity. Gen. Relativ. Gravit. 37(1), 19–51 (2005). doi: 10.1007/s10714-005-0002-6 CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    Keane, A.J.: An extension of the Newman–Janis algorithm. Class. Quantum Gravity 31(15), 155,003 (2014). doi: 10.1088/0264-9381/31/15/155003
  16. 16.
    Kim, H.: Notes on Spinning \({AdS}\_3\) Black Hole Solution (1997)Google Scholar
  17. 17.
    Kim, H.: Spinning BTZ black hole versus Kerr black hole: a closer look. Phys. Rev. D 59(6) (1999). doi: 10.1103/PhysRevD.59.064002
  18. 18.
    Mallett, R.: Metric of a rotating radiating charged mass in a de Sitter space. Phys. Lett. A 126(4), 226–228 (1988). doi: 10.1016/0375-9601(88)90750-5 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918–919 (1965). doi: 10.1063/1.1704351 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Newman, E.T., Janis, A.I.: Note on the Kerr spinning-particle metric. J. Math. Phys. 6(6), 915–917 (1965). doi: 10.1063/1.1704350 CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Schiffer, M.M., Adler, R.J., Mark, J., Sheffield, C.: Kerr geometry as complexified Schwarzschild geometry. J. Math. Phys. 14(1), 52–56 (1973). doi: 10.1063/1.1666171 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Talbot, C.J.: Newman–Penrose approach to twisting degenerate metrics. Commun. Math. Phys. 13(1), 45–61 (1969). doi: 10.1007/BF01645269 CrossRefADSMATHMathSciNetGoogle Scholar
  23. 23.
    Visser, M.: The Kerr spacetime: a brief introduction. In: Wiltshire, D. L., Visser, M., Scott, S. M. (eds.) The Kerr Spacetime. Cambridge University Press (2009)Google Scholar
  24. 24.
    Whisker, R.: Braneworld Black Holes. Ph.D. thesis, University of Durham (2008)Google Scholar
  25. 25.
    Xu, D.: Radiating metric, retarded time coordinates of Kerr–Newman–de Sitter black holes and related energy-momentum tensor. Sci. China Ser. A Math. 41(6), 663–672 (1998). doi: 10.1007/BF02876237 CrossRefADSMATHGoogle Scholar
  26. 26.
    Xu, D.Y.: Exact solutions of Einstein and Einstein–Maxwell equations in higher-dimensional spacetime. Class. Quantum Gravity 5(6), 871 (1988). doi: 10.1088/0264-9381/5/6/008 CrossRefGoogle Scholar
  27. 27.
    Yazadjiev, S.: Newman–Janis method and rotating dilaton-axion black hole. Gen. Relativ. Gravit. 32(12), 2345–2352 (2000). doi: 10.1023/A:1002080003862 CrossRefADSMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sorbonne UniversitésUPMC Univ Paris 06ParisFrance
  2. 2.CNRSParisFrance

Personalised recommendations