Advertisement

Emergent cosmology, inflation and dark energy

  • Eduardo Guendelman
  • Ramón Herrera
  • Pedro Labrana
  • Emil Nissimov
  • Svetlana Pacheva
Research Article

Abstract

A new class of gravity–matter models defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space–time manifold are studied in some detail. These models involve an additional \(R^2\) (square of the scalar curvature) term as well as scalar matter field potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry. Scale invariance is spontaneously broken upon integration of the equations of motion for the auxiliary volume-form degrees of freedom. After performing transition to the physical Einstein frame we obtain: (1) an effective potential for the scalar field with two flat regions which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (2) for a definite parameter range the model possesses a non-singular “emergent universe” solution which describes an initial phase of evolution that precedes the inflationary phase; (3) for a reasonable choice of the parameters the present model conforms to the Planck Collaboration data.

Keywords

Modified gravity theories Non-Riemannian volume forms  Global Weyl-scale symmetry spontaneous breakdown Flat regions of scalar potential Non-singular origin of the universe 

Notes

Acknowledgments

We express our gratitude to Alexander Kaganovich for collaboration at the initial stage of this work [76]. We are thankful to Alexei Starobinsky, Marek Szydlowski, Martin Cederwall and Lilia Anguelova for instructive discussions. We are indebted to the referee for his constructive suggestions to improve the present work. E.G., E.N. and S.P. gratefully acknowledge support of our collaboration through the academic exchange agreement between the Ben-Gurion University in Beer-Sheva, Israel, and the Bulgarian Academy of Sciences. R.H. was supported by Comisión Nacional de Ciencias y Tecnología of Chile through FONDECYT Grant 1130628 and DI-PUCV 123.724. P.L. was supported by Dirección de Investigación de la Universidad del Bío-Bío through grants GI121407/VBC and 141407 3/R. S.P. has received partial support from European COST action MP-1210.

References

  1. 1.
    Kolb, E.W., Turner, M.S.: The Early Universe. Addison Wesley, Boston (1990)MATHGoogle Scholar
  2. 2.
    Linde, A.: Particle Physics and Inflationary Cosmology. Harwood, Chur (1990)CrossRefGoogle Scholar
  3. 3.
    Guth, A.: The Inflationary Universe. Vintage, Random House, New York (1998)Google Scholar
  4. 4.
    Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  5. 5.
    Dodelson, S.: Modern Cosmology. Academic Press, London (2003)Google Scholar
  6. 6.
    Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)MATHGoogle Scholar
  7. 7.
    Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  8. 8.
    Liddle, A.R., Lyth, D.H.: The Primordial Density Perturbations—Cosmology, Inflation and Origin of Structure. Cambridge University Press, Cambridge (2009)Google Scholar
  9. 9.
    Turner, M.S.: In Third Stromle Symposium “The Galactic Halo”, ASP Conference Series, Vol. 666, Gibson, B.K., Axelrod, T.S., Putman, M.E. (eds.), (1999)Google Scholar
  10. 10.
    Bahcall, N., Ostriker, J.P., Perlmutter, S.J., Steinhardt, P.J.: Science 284, 1481 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    Riess, A., et al.: Astron. J. 116, 1009–1038 (1998)CrossRefADSGoogle Scholar
  13. 13.
    Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Linde, A.: Phys. Lett. 108B, 389–393 (1982)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Albrecht, A., Steinhardt, P.: Phys. Rev. Lett. 48, 1220–1223 (1982)CrossRefADSGoogle Scholar
  16. 16.
    Liddle, A.R., Lyth, D.H.: Phys. Lett. 291B, 391–398 (1992). ( arxiv:astro-ph/9208007)CrossRefADSGoogle Scholar
  17. 17.
    Liddle, A.R., Lyth, D.H.: Phys. Rep. 231, 1–105 (1993). ( arxiv:astro-ph/9303019)CrossRefADSGoogle Scholar
  18. 18.
    Peebles, P.J.E., Vilenkin, A.: Phys. Rev. D59, 063505 (1999)ADSGoogle Scholar
  19. 19.
    Nojiri, S., Odintsov, S.: Phys. Rev. D68, 123512 (2003). ( arxiv:hep-th/0307288)ADSMathSciNetGoogle Scholar
  20. 20.
    Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastianiand, L., Zerbini, S.: Phys. Rev. 77, 046009 (2008). (0712.4017 [hep-th]), and references thereinADSGoogle Scholar
  21. 21.
    Appleby, S.A., Battye, R.A., Starobinsky, A.A.: JCAP 1006, 005 (2010). ( arxiv:0909.1737 [astro-ph])CrossRefADSGoogle Scholar
  22. 22.
    Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D62, 023511 (2000). ( arxiv:astro-ph/9912463)ADSGoogle Scholar
  23. 23.
    Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.: Phys. Rev. Lett. 85, 4438 (2000). ( arxiv:astro-ph/0004134)CrossRefADSGoogle Scholar
  24. 24.
    Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.: Phys. Rev. D63, 103510 (2001). ( arxiv:astro-ph/0006373)ADSGoogle Scholar
  25. 25.
    Chiba, T.: Phys. Rev. D66, 063514 (2002). ( arxiv:astro-ph/0206298)ADSGoogle Scholar
  26. 26.
    Saitou, R., Nojiri, S.: Eur. Phys. J. C71, 1712 (2011). ( arxiv:1104.0558 [hep-th])CrossRefADSGoogle Scholar
  27. 27.
    Wetterich, C.: Phys. Rev. D89, 024005 (2014). ( arxiv:1308.1019 [astro-ph])ADSGoogle Scholar
  28. 28.
    Wali Hossain, Md, Myrzakulov, R., Sami, M., Saridakis, E.N.: Phys. Rev. D90, 023512 (2014). ( arxiv:1402.6661 [gr-qc])ADSGoogle Scholar
  29. 29.
    Guendelman, E., Nissimov, E., Pacheva, S.: arxiv:1407.6281 [hep-th]
  30. 30.
    Ellis, G.F.R., Maartens, R.: Class. Quantum Grav. 21, 223 (2004). ( gr-qc/0211082)CrossRefADSMATHMathSciNetGoogle Scholar
  31. 31.
    Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quantum Grav. 21, 233 (2004). ( arxiv:gr-qc/0307112)CrossRefADSMATHMathSciNetGoogle Scholar
  32. 32.
    Mulryne, D.J., Tavakol, R., Lidsey, J.E., Ellis, G.F.R.: Phys. Rev. D71, 123512 (2005). ( arxiv:astro-ph/0502589)ADSGoogle Scholar
  33. 33.
    Banerjee, A., Bandyopadhyay, T., Chaakraborty, S.: Grav. Cosmol. 13, 290–292 (2007). ( arxiv:0705.3933 [gr-qc])ADSGoogle Scholar
  34. 34.
    Lidsey, J.E., Mulryne, D.J.: Phys. Rev. D73, 083508 (2006). ( arxiv:hep-th/0601203)ADSMathSciNetGoogle Scholar
  35. 35.
    Mukherjee, S., Paul, B.C., Maharaj, S.D., Beesham, A.: ( arxiv:gr-qc/0505103)
  36. 36.
    Mukherjee, S., Paul, B.C., Dadhich, N.K., Maharaj, S.D., Beesham, A.: Class. Quantum Grav. 23, 6927 (2006). ( arxiv:gr-qc/0605134)CrossRefADSMATHMathSciNetGoogle Scholar
  37. 37.
    Penrose, R., Hawking, S.W.: Proc. R. Soc. A314, 529 (1970)ADSMathSciNetGoogle Scholar
  38. 38.
    Geroch, R.P.: Phys. Rev. Lett. 17, 445 (1966)CrossRefADSMATHGoogle Scholar
  39. 39.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)CrossRefMATHGoogle Scholar
  40. 40.
    Borde, A., Vilenkin, A.: Phys. Rev. Lett. 72, 3305–3309 (1994). ( arxiv:gr-qc/9312022)CrossRefADSGoogle Scholar
  41. 41.
    Borde, A., VilenkinInt, A.: J. Mod. Phys. D5, 813–824 (1996). ( arxiv:gr-qc/9612036)ADSGoogle Scholar
  42. 42.
    Guendelman, E.I.: Mod. Phys. Lett. A14, 1043–1052 (1999). ( arxiv:gr-qc/9901017)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Guendelman, E.I.: In “Energy Densities in the Universe”. Proc. Rencontres de Moriond, Les Arcs (2000) ( arxiv:gr-qc/0004011)
  44. 44.
    Guendelman, E.I., Kaganovich, A.: Phys. Rev. D60, 065004 (1999). ( arxiv:gr-qc/9905029)ADSGoogle Scholar
  45. 45.
    Guendelman, E.I., Katz, O.: Class. Quantum Grav. 20, 1715–1728 (2003). ( arxiv:gr-qc/0211095)CrossRefADSMATHMathSciNetGoogle Scholar
  46. 46.
    del Campo, S., Guendelman, E., Herrera, R., Labrana, P.: JCAP 1006, 026 (2010). ( arxiv:1006.5734 [astro-ph.CO])CrossRefGoogle Scholar
  47. 47.
    del Campo, S., Guendelman, E., Kaganovich, A., Herrera, R., Labrana, P.: Phys. Lett. 699, 211 (2011). ( arxiv:1105.0651 [astro-ph.CO])CrossRefGoogle Scholar
  48. 48.
    Guendelman, E.I., Labrana, P.: Int. J. Mod. Phys. D22, 1330018 (2013). ( arxiv:1303.7267 [astro-ph.CO])CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Guendelman, E.I., Singleton, D., Yongram, N.: JCAP 1211, 044 (2012). ( arxiv:1205.1056 [gr-qc])CrossRefADSGoogle Scholar
  50. 50.
    Guendelman, E.I., Nishino, H., Rajpoot, S.: Phys. Lett. 732B, 156 (2014). ( arxiv:1403.4199 [hep-th])CrossRefADSGoogle Scholar
  51. 51.
    Guendelman, E., Kaganovich, A., Nissimov, E., Pacheva, S.: Phys. Rev. D66, 046003 (2002). ( arxiv:hep-th/0203024)ADSMathSciNetGoogle Scholar
  52. 52.
    Nishino, H., Rajpoot, S.: Phys. Lett. 736B, 350–355 (2014). ( arxiv:1411.3805 [hep-th])CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Guendelman, E., Nissimov, E., Pacheva, S., Vasihoun, M.: Bulg. J. Phys. 40, 121–126 (2013). ( arxiv:1310.2772 [hep-th])MathSciNetGoogle Scholar
  54. 54.
    Guendelman, E., Nissimov, E., Pacheva, S., Vasihoun, M.: Bulg. J. Phys. 41, 123–129 (2014). ( arxiv:1404.4733 [hep-th])Google Scholar
  55. 55.
    Starobinsky, A.: Phys. Lett. 91B, 99–102 (1980)CrossRefADSGoogle Scholar
  56. 56.
    Zee, A.: Phys. Rev. Lett. 42, 417 (1979)CrossRefADSGoogle Scholar
  57. 57.
    Weinberg, S.: Gravitation and Cosmology—Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  58. 58.
    Arkani-Hamed, N., Hall, L.J., Kolda, C., Murayama, H.: Phys. Rev. Lett. 85, 4434–4437 (2000). ( astro-ph/0005111[astro-ph])CrossRefADSGoogle Scholar
  59. 59.
    Ade, P.A.R., et al.: BICEP2 collaboration. Phys. Rev. Lett. 112, 241101 (2014). ( arxiv:1403.3985) [astro-ph.CO])CrossRefADSGoogle Scholar
  60. 60.
    Adam, R. et al.: (Planck Collaboration), arxiv:1409.5738 [astro-ph.CO]
  61. 61.
    Adam, R. et al.: (Planck Collaboration), arxiv:1303.5082 [astro-ph.CO]
  62. 62.
    Garriga, J., Mukhanov, V.F.: Phys. Lett. B458, 219 (1999)CrossRefADSMathSciNetGoogle Scholar
  63. 63.
    Chen, X., Huang, M.X., Kachru, S., Shiu, G.: JCAP 0701, 002 (2007)CrossRefADSGoogle Scholar
  64. 64.
    Langlois, D., Renaux-Petel, S.: JCAP 0804, 017 (2008)CrossRefADSGoogle Scholar
  65. 65.
    Mithahi, A., Vilenkin, A.: JCAP 1405, 006 (2014). ( arxiv:1403.0818 [hep-th])CrossRefADSGoogle Scholar
  66. 66.
    Bag, S., Sahni, V., Shtanov, Yu., Unnikrishnan, S.: JCAP 1407, 034 (2014). arxiv:1403.4243 [hep-th])
  67. 67.
    Mithahi, A., Vilenkin, A.: arxiv:1407.5361 [hep-th]
  68. 68.
    Szydlowski, M., Hrycyna, O., Stachowski, A.: Int. J. Geom. Method. Mod. Phys. 11, 1460012 (2014). ( arxiv:1308.4069 [gr-qc])
  69. 69.
    Labrana, P.: arxiv:1312.6877 [astro-ph.CO]
  70. 70.
    Kofman, L., Linde, A.: JHEP 0207, 004 (2002). ( arxiv:hep-th/0205121)CrossRefADSMathSciNetGoogle Scholar
  71. 71.
    Feng, B., Li, M.: Phys. Lett. B564, 169 (2003). ( arxiv:hep-ph/0212213)CrossRefADSGoogle Scholar
  72. 72.
    Felder, G., Kofman, L., Linde, L.: Phys. Rev. D60, 103505 (1999). ( arxiv:hep-ph/9903350)ADSGoogle Scholar
  73. 73.
    Lyth, D.H., Wands, D.: Phys. Lett. B524, 5 (2002). ( arxiv:hep-ph/0110002)CrossRefADSGoogle Scholar
  74. 74.
    Liddle, A.R., Urena-Lopez, L.A.: Phys. Rev. D68, 04351 (2003). ( arxiv:astro-ph/0302054)Google Scholar
  75. 75.
    Campuzano, C., del Campo, S., Herrera, R.: Phys. Lett. B633, 149 (2006). ( arxiv:gr-qc/0511128)CrossRefADSGoogle Scholar
  76. 76.
    Guendelman, E., Kaganovich, A., Nissimov, E., Pacheva, S.: arxiv:1408.5344v2 [gr-qc]

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eduardo Guendelman
    • 1
  • Ramón Herrera
    • 2
  • Pedro Labrana
    • 3
  • Emil Nissimov
    • 4
  • Svetlana Pacheva
    • 4
  1. 1.Department of PhysicsBen-Gurion University of the NegevBeershebaIsrael
  2. 2.Instituto de FísicaPontificia Universidad Católica de ValparaísoValparaisoChile
  3. 3.Departamento de Física, Facultad de CienciasUniversidad del Bío-BíoConcepciónChile
  4. 4.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations