Advertisement

The angular momentum of plane-fronted gravitational waves in the teleparallel equivalent of general relativity

  • J. F. da Rocha-Neto
  • J. W. Maluf
Research Article

Abstract

We present a simplified expression for the gravitational angular momentum in the framework of the teleparallel equivalent of general relativity (TEGR). The expression arises from the constraints equations of the Hamiltonian formulation of the TEGR. We apply this expression to the calculation of the angular momentum of plane-fronted gravitational waves in an arbitrary three-dimensional volume \(V\) of space and compare the results with those obtained for linearised gravitational waves.

Keywords

Gravitational waves Angular momentum Teleparallel gravity 

References

  1. 1.
    Barish, B.C., Weiss, R.: Phys. Today 52(10), 44–50 (1999)CrossRefGoogle Scholar
  2. 2.
    Dereli, T., Tucker, R.W.: Class. Quantum Gravity 21, 1459 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Butcher, L.M., Lasenby, A., Hobson, M.: Phys. Rev. D 86, 084013 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Butcher, L.M., Lasenby, A., Hobson, M.: Phys. Rev. D 86, 084012 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Maluf, J.W.: Ann. Phys. (Berlin) 525, 339 (2013)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Maluf, J.W., da Rocha-Neto, J.F.: Phys. Rev. D 64, 084014 (2001)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    da Rocha-Neto, J.F., Maluf, J.W., Ulhoa, S.C.: Phys. Rev. D 82, 124035 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    F. W Hehl: In: P.G. Bergmann, V. de Sabbata (eds.) Proceedings of the 6th Scool of Cosmology and Gravitation on Spin, Torsion, Rotation and Supergravity, Erice, 1979, Plenum, New York (1980)Google Scholar
  9. 9.
    Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Phys. Rep. 258, 1–171 (1995)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ortin, T.: Gravity and Strings. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Maluf, J.W., da Rocha-Neto, J.F., Toríbio, T.M.L., Castello-Branco, K.H.: Phys. Rev. D 65, 124001 (2002)Google Scholar
  12. 12.
    Maluf, J.W., Ulhoa, S.C., Faria, F.F., da Rocha Neto, J.F.: Class. Quantum Gravity 23, 6245 (2006)Google Scholar
  13. 13.
    Maluf, J.W., Ulhoa, S.C.: Gen. Relativ. Gravit. 41, 1233 (2009)Google Scholar
  14. 14.
    Maluf, J.W., Ulhoa, S.C.: Phys. Rev. D 78, 047502 (2008)Google Scholar
  15. 15.
    Kramer, D., Stephani, H., MacCollum, M.A.H., Herlt, H.: Exact Solutions of the Einstein’s Fields Equations. Cambridge University Press, Cambridge (1980)Google Scholar
  16. 16.
    Maluf, J.W., Faria, F.F., Ulhoa, S.C.: Class. Quantum Gravity 24, 2743 (2007)Google Scholar
  17. 17.
    Maluf, J.W., Ulhoa, S.C., da Rocha-Neto, J.F.: Gen. Relativ. Gravit. 45, 1163 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations