On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map

  • Nurettin Cenk Turgay
Research Article


In this paper, we work on the marginally trapped surfaces in the 4-dimensional Minkowski, de Sitter and anti-de Sitter space-times. We obtain the complete classification of the marginally trapped surfaces in the Minkowski space-time with pointwise 1-type Gauss map. Further, we give a construction of a marginally trapped surface with 1-type Gauss map with a given boundary curve. We also state some explicit examples. We also prove that a marginally trapped surface in the de Sitter space-time \(\mathbb S^4_1(1)\) or anti-de Sitter space-time \(\mathbb H^4_1(-1)\) has pointwise 1-type Gauss map if and only if its mean curvature vector is parallel. Moreover, we obtain that there exists no marginally trapped surface in \(\mathbb S^4_1(1)\) or \(\mathbb H^4_1(-1)\) with harmonic Gauss map.


Minkowski space-time Marginally trapped surface  Finite type Gauss map De Sitter space-time 

Mathematics Subject Classification (2010)

53B25 53C50 



The author would like to thank to reviewers for their valuable comments which help to improve this manuscript.


  1. 1.
    Bleecker, D.D., Weiner, J.L.: Extrinsic bounds on \(\lambda _1\) of \(\varDelta \) on a compact manifold. Comment Math. Helv. 51, 601–609 (1976)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cabrerizo, J.L., Fernández, M., Gómez, J.S.: Isotropy and marginally trapped surfaces in a spacetime. Class. Quantum Gravity 27, 135005 (2010)Google Scholar
  3. 3.
    Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type. World Scientific, Singapore (1984)CrossRefMATHGoogle Scholar
  4. 4.
    Chen, B.Y.: Finite type pseudo-Riemannian submanifolds. Tamkang J. Math. 17(2), 137–151 (1986)MATHMathSciNetGoogle Scholar
  5. 5.
    Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117–337 (1996)MATHMathSciNetGoogle Scholar
  6. 6.
    Chen, B.Y.: Classification of spatial surfaces with parallel mean curvature vector in pseudo-Euclidean spaces of arbitrary dimension. J. Math. Phys. 50, 043503 (2009)Google Scholar
  7. 7.
    Chen, B.Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A 45(2), 323–347 (1991)MATHMathSciNetGoogle Scholar
  8. 8.
    Chen, B.Y., Morvan, J.M., Nore, T.: Energy, tension and finite type maps. Kodai Math. J. 9(3), 406–418 (1986)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chen, B.Y., Piccinni, P.: Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 35, 161–186 (1987)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chen, B.Y., van der Veken, J.: Marginally trapped surfaces in Lorentzian space forms with positive relative nullity. Class. Quantum Gravity 24, 551–563 (2007)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Chen, B.Y., van der Veken, J.: Classification of marginally trapped surfaces with parallel mean curvature vector in Lorentzian space forms. Houst. J. Math. 36(2), 421–449 (2010)MATHGoogle Scholar
  12. 12.
    Choi, S.M., Ki, U.H., Suh, Y.J.: Classification of rotation surfaces in pseudo-Euclidean space. J. Korean Math. Soc. 35(2), 315–330 (1998)MATHMathSciNetGoogle Scholar
  13. 13.
    Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map. Taiwan. J. Math. 11, 1407–1416 (2007)MATHMathSciNetGoogle Scholar
  14. 14.
    Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map in Lorentz–Minkowski space. Proc. Est. Acad. Sci. 58, 146–161 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Evans, L.R.: Partial Differential Equations. American Mathematical Society, Providence, RI (1998)MATHGoogle Scholar
  16. 16.
    Haesen, S., Ortega, M.: Boost invariant marginally trapped surfaces in Minkowski 4-space. Class. Quantum Gravity 24, 5441 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    O’Neill, M.P.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London (1983)MATHGoogle Scholar
  18. 18.
    Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Reilly, R.C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52(1), 525–533 (1977)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Senovilla, J.: Trapped surfaces, horizons and exact solutions in higher dimensions. Class. Quantum Gravity 19, L113–L119 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Yoon, Y.W.: On the Gauss map of translation surfaces in Minkowski 3-spaces. Taiwan. J. Math. 6, 389–398 (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and LettersIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations