Kerr-like phantom wormhole

  • Galaxia Miranda
  • Tonatiuh Matos
  • Nadiezhda Montelongo García
Research Article


In this work we study a Kerr-like wormhole with an scalar field with opposite sign as source (Phantom). It has three parameters: mass, angular momentum and scalar field charge. This space-time has a naked ring singularity, otherwise it is regular everywhere. The main feature of this wormhole is that the mouth of the throat lies on a sphere of the same radius as the ring singularity and apparently does not allow any observer to reach the singularity, it behaves like an anti-horizon. After analyzing the geodesics of the wormhole we find that an observer can go through the wormhole without troubles, but the equator presents an infinite potential barrier which does not allow any geodesic from reaching the throat. From an analysis of the Riemann tensor we obtain that the tidal forces are small and could allow the wormhole to be traversable, from the north pole, for an observer like a human being.


Kerr-like wormhole Phantom field Ring singularity 



We would like to thank Dario Nuñez for many helpful discussions. The numerical computations were carried out in the “Laboratorio de Super-Cómputo Astrofísico (LaSumA) del Cinvestav”, in the UNAM’s cluster Kan-Balam and in the cluster Xiuhcoatl from Cinvestav. This work was partially supported by CONACyT México under grants CB-2009-01, no. 132400, CB-2011, no. 166212, and I0101/131/07 C- 234/07 of the Instituto Avanzado de Cosmologia (IAC) collaboration ( GM is supported by a CONACYT scholarships.


  1. 1.
    Einstein, A., Rosen, N.: Phys. Rev. 48, 73 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Ellis, H.G.: J. Math. Phys. 14, 395 (1973)CrossRefGoogle Scholar
  3. 3.
    Morris, M.S., Thorne, K.S.: Am. J. Phys. 56(5), 365 (1988)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Visser, M.: Lorentzian wormholes: Form Einstein to Hawking. I. E. P Press, Woodsbury, NY (1995)Google Scholar
  5. 5.
    Lobo, F.S.N.: Phys. Rev. D 71, 084011 (2005) e-print: gr-qc/0502099Google Scholar
  6. 6.
    Varum, S., Shafieloo, A., Starobinsky, A.A.: e-Print: arXiv:0807.3548Google Scholar
  7. 7.
    Penrose, R.: Battele Rencontres. In: de Witt, B.S., Wheeler, J.A. (eds.) Benjamin, New York (1968)Google Scholar
  8. 8.
    Shinkay, H., Hayward, S.A.: Phys. Rev. D (2002), e-print:gr-qc/0205041Google Scholar
  9. 9.
    Gonzalez, J.A., Guzman, F.S., Sarbach, O.: Class. Quant. Grav. 26, 015010 (2009)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Matos, T., Núñez, D.: Class. Quant. Grav. 23, 4485 (2006)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Teo, E.: Phys. Rev. D 58, 024014 (1998)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kuhfitting, P.K.F.: Phys. Rev. D 67, 064015 (2003) e-print: gr-qc/0401028, e-print: gr-qc/0401048Google Scholar
  13. 13.
    Matos, T.: Gen. Relativ. Gravit. doi: 10.1007/s10714-010-0976-6 (2010)
  14. 14.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact soltuions to Einstein’s field equations, 2nd edn. Cambridge, U.P., U.K (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Galaxia Miranda
    • 1
  • Tonatiuh Matos
    • 1
  • Nadiezhda Montelongo García
    • 1
  1. 1.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del IPNMéxicoMéxico

Personalised recommendations