General Relativity and Gravitation

, Volume 45, Issue 11, pp 2325–2339 | Cite as

On the total mass of closed universes

Research Article
Part of the following topical collections:
  1. Topical Collection: Progress in Mathematical Relativity with Applications to Astrophysics and Cosmology


The total mass, the Witten type gauge conditions and the spectral properties of the Sen–Witten and the 3-surface twistor operators in closed universes are investigated. It has been proven that a recently suggested expression \(\mathtt{M}\) for the total mass density of closed universes is vanishing if and only if the spacetime is flat with toroidal spatial topology; it coincides with the first eigenvalue of the Sen–Witten operator; and it is vanishing if and only if Witten’s gauge condition admits a non-trivial solution. Here we generalize slightly the result above on the zero-mass configurations: \(\mathtt{M}=0\) if and only if the spacetime is holonomically trivial with toroidal spatial topology. Also, we show that the multiplicity of the eigenvalues of the (square of the) Sen–Witten operator is even, and a potentially viable gauge condition is suggested. The monotonicity properties of \(\mathtt{M}\) through the examples of closed Bianchi I and IX cosmological spacetimes are also discussed. A potential spectral characterization of these cosmological spacetimes, in terms of the spectrum of the Riemannian Dirac operator and the Sen–Witten and the 3-surface twistor operators, is also indicated.


Total mass in GR Closed universe Positive energy theorems 


  1. 1.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity, In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962) (online version: gr-qc/0405109)Google Scholar
  2. 2.
    Bäckdahl, T., Valiente-Kroon, J.A.: Approximate twistors and positive mass. Class. Quantum Gravity 28, 075010 (2011) (online version: arXiv:1011.3712 [gr-qc])Google Scholar
  3. 3.
    Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems, Proc. R. Soc. Lond. Ser. A 269, 21–52 (1962)Google Scholar
  4. 4.
    Bramson, B.D.: The alignment of frames of reference at null infinity for asymptotically flat Einstein–Maxwell manifolds. Proc. R. Soc. Lond. Ser. A 341, 451–461 (1975)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Exton, A.R., Newman, E.T., Penrose, R.: Conserved quantities in the Einstein–Maxwell theory. J. Math. Phys. 10, 1566–1570 (1969)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Frauendiener, J.: Triads and the Witten equation. Class. Quantum Gravity 8, 1881–1887 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Friedrich, T.: Der erste Eigenwert des Dirac-operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hijazi, O., Zhang, X.: The Dirac–Witten operators on spacelike hypersurfaces. Anal. Geom. 11, 737–750 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Horowitz, G., Tod, K.P.: A relation between local and total energy in general relativity. Commun. Math. Phys. 85, 429–447 (1982)MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris A–B 257, 7–9 (1963)MathSciNetMATHGoogle Scholar
  11. 11.
    Nester, J.M.: A new gravitational energy expression with a simple positivity proof. Phys. Lett. A 83, 241–42 (1981)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Nester, J.M.: A gauge condition for orthonormal three-frames. J. Math. Phys. 30, 624–626 (1989)MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    Parker, T.H.: Gauge choice in Witten’s energy expression. Commun. Math. Phys. 100, 471–480 (1985)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Penrose, R., Rindler, W.: Spinors and Spacetime, vol. 2. Cambridge University Press, Cambridge (1986)CrossRefGoogle Scholar
  15. 15.
    Reula, O.: Existence theorem for solutions of Witten’s equation and nonnegativity of total mass. J. Math. Phys. 23, 810–814 (1982)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Reula, O., Tod, K.P.: Positivity of the Bondi energy. J. Math. Phys. 25, 1004–1008 (1984)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Sachs, R.K.: Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851–2864 (1962)MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    Szabados, L.B.: Two dimensional Sen connections in general relativity. Class. Quantum Gravity 11, 1833–1846 (1994) (online version: gr-qc/9402005)Google Scholar
  19. 19.
    Szabados, L.B.: A lower bound for the eigenvalue of the Sen–Witten operator on closed spacelike hypersurfaces (online version: arXiv:0712.2785 [gr-qc])Google Scholar
  20. 20.
    Szabados, L.B.: Mass, gauge conditions and spectral properties of the Sen–Witten and 3-surface twistor operators in closed universes. Class. Quantum Gravity 29, 095001 (30pp) (2012) (online version: arXiv:1112.2966 [gr-qc])Google Scholar
  21. 21.
    Tod, K.P.: Three-surface twistors and conformal embedding. Gen. Relativ. Gravit. 16, 435–443 (1984)MathSciNetADSCrossRefMATHGoogle Scholar
  22. 22.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 30, 381–402 (1981)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsBudapest 114Hungary

Personalised recommendations