Skip to main content
Log in

On the total mass of closed universes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The total mass, the Witten type gauge conditions and the spectral properties of the Sen–Witten and the 3-surface twistor operators in closed universes are investigated. It has been proven that a recently suggested expression \(\mathtt{M}\) for the total mass density of closed universes is vanishing if and only if the spacetime is flat with toroidal spatial topology; it coincides with the first eigenvalue of the Sen–Witten operator; and it is vanishing if and only if Witten’s gauge condition admits a non-trivial solution. Here we generalize slightly the result above on the zero-mass configurations: \(\mathtt{M}=0\) if and only if the spacetime is holonomically trivial with toroidal spatial topology. Also, we show that the multiplicity of the eigenvalues of the (square of the) Sen–Witten operator is even, and a potentially viable gauge condition is suggested. The monotonicity properties of \(\mathtt{M}\) through the examples of closed Bianchi I and IX cosmological spacetimes are also discussed. A potential spectral characterization of these cosmological spacetimes, in terms of the spectrum of the Riemannian Dirac operator and the Sen–Witten and the 3-surface twistor operators, is also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity, In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962) (online version: gr-qc/0405109)

  2. Bäckdahl, T., Valiente-Kroon, J.A.: Approximate twistors and positive mass. Class. Quantum Gravity 28, 075010 (2011) (online version: arXiv:1011.3712 [gr-qc])

  3. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems, Proc. R. Soc. Lond. Ser. A 269, 21–52 (1962)

    Google Scholar 

  4. Bramson, B.D.: The alignment of frames of reference at null infinity for asymptotically flat Einstein–Maxwell manifolds. Proc. R. Soc. Lond. Ser. A 341, 451–461 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Exton, A.R., Newman, E.T., Penrose, R.: Conserved quantities in the Einstein–Maxwell theory. J. Math. Phys. 10, 1566–1570 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  6. Frauendiener, J.: Triads and the Witten equation. Class. Quantum Gravity 8, 1881–1887 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Friedrich, T.: Der erste Eigenwert des Dirac-operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hijazi, O., Zhang, X.: The Dirac–Witten operators on spacelike hypersurfaces. Anal. Geom. 11, 737–750 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horowitz, G., Tod, K.P.: A relation between local and total energy in general relativity. Commun. Math. Phys. 85, 429–447 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris A–B 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  11. Nester, J.M.: A new gravitational energy expression with a simple positivity proof. Phys. Lett. A 83, 241–42 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  12. Nester, J.M.: A gauge condition for orthonormal three-frames. J. Math. Phys. 30, 624–626 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Parker, T.H.: Gauge choice in Witten’s energy expression. Commun. Math. Phys. 100, 471–480 (1985)

    Article  ADS  MATH  Google Scholar 

  14. Penrose, R., Rindler, W.: Spinors and Spacetime, vol. 2. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  15. Reula, O.: Existence theorem for solutions of Witten’s equation and nonnegativity of total mass. J. Math. Phys. 23, 810–814 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Reula, O., Tod, K.P.: Positivity of the Bondi energy. J. Math. Phys. 25, 1004–1008 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  17. Sachs, R.K.: Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851–2864 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Szabados, L.B.: Two dimensional Sen connections in general relativity. Class. Quantum Gravity 11, 1833–1846 (1994) (online version: gr-qc/9402005)

    Google Scholar 

  19. Szabados, L.B.: A lower bound for the eigenvalue of the Sen–Witten operator on closed spacelike hypersurfaces (online version: arXiv:0712.2785 [gr-qc])

  20. Szabados, L.B.: Mass, gauge conditions and spectral properties of the Sen–Witten and 3-surface twistor operators in closed universes. Class. Quantum Gravity 29, 095001 (30pp) (2012) (online version: arXiv:1112.2966 [gr-qc])

  21. Tod, K.P.: Three-surface twistors and conformal embedding. Gen. Relativ. Gravit. 16, 435–443 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 30, 381–402 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László B. Szabados.

Additional information

This article belongs to the Topical Collection: Progress in Mathematical Relativity with Applications to Astrophysics and Cosmology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabados, L.B. On the total mass of closed universes. Gen Relativ Gravit 45, 2325–2339 (2013). https://doi.org/10.1007/s10714-013-1587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1587-9

Keywords

Navigation