Advertisement

General Relativity and Gravitation

, Volume 45, Issue 7, pp 1387–1402 | Cite as

Effects of modified Chaplygin gas on structure formation in the universe

  • Ya-Bo Wu
  • Yang-Yang Su
  • Jian-Bo Lu
  • Yue-Yue Zhao
  • Wei-Qiang Yang
  • Xue Zhang
  • Liang-Liang Lin
Research Article

Abstract

In this paper, the structure formation theories for the modified Chaplygin gas (MCG) model are established in the linear and non-linear regimes. Concretely, for the linear regime, the evolutions of the growth index \(f\) and the growth variable \(T\) are illustrated for the interacting MCG (IMCG) model and MCG model without interaction between dark energy and dark matter, which can give reasonable predictions for structure formation. While for the non-linear regime, by supposing the homogeneity and conservation of dark energy when the system reaches virialization, we can point out that MCG reaches the state of turn around later than GCG, the value of the collapse factor in MCG model is bigger than the fiducial value 0.5 in Einstein-de Sitter universe, namely \(\eta >0.5\), because of the effective repulsive force of dark energy, and the density contrast of the virialization tends to the Einstein-de Sitter value \(18\pi ^{2}\). Furthermore, the evolutions of the cluster number counts in LCDM, GCG and MCG models without and with interaction between dark energy and dark matter are illustrated by extending the Press-Schechter framework, which can exhibit the differences among the three models.

Keywords

Modified Chaplygin gas Dark energy Structure formation  Density contrast 

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant Nos.11175077, 11205078 and 11147150), and the Natural Science Foundation of Liaoning Province, China (Grant Nos.20102124 and L2011189).

References

  1. 1.
    Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998)Google Scholar
  2. 2.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Ratra, B., Peebles, J.: Phys. Rev. D 37, 321 (1988)CrossRefGoogle Scholar
  4. 4.
    Ferreira, P.G., Joyce, M.: Phys. Rev. Lett. 79, 4740 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Ferreira, P.G., Joyce, M.: Phys. Rev. D 58, 023503 (1997)Google Scholar
  6. 6.
    Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Lett. B, 545 (2002).Google Scholar
  8. 8.
    Li, M.: Phys. Lett. B 603, 1 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Kamenshchik, A.Y., Moschellaand, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)ADSMATHCrossRefGoogle Scholar
  10. 10.
    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 67, 063003 (2003)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Debnath, U., Banerjee, A., Chakraborty, S.: Class. Quant. Grav. 21, 5609–5618 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Chimento, L.P.: Phys. Rev. D 69, 123517 (2004)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Gunn, J.E., Gott, J.R.: Astrophys. J. 176, 1 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    Fabris, J.C., et al.: Phys. Lett. B 694, 289 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, L., Steinhardt, P.J.: Astrophys. J. 508, 483 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Eke, V.R., Cole, S., Frenk, C.S.: Mon. Not. Roy. Astron. Soc. 282, 263 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Viana, P.T.P., Liddle, A.R.: Mon. Not. Roy. Astron. Soc. 281, 323 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Lacey, C., Cole, S.: Mon. Not. Roy. Astron. Soc. 262, 627 (1993)ADSGoogle Scholar
  20. 20.
    Press, W., Schechter, P.: Astrophys. J. 187, 425 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    Basilakos, S.: Astrophys. J. 590, 636 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, Y.B., Li, S., et al.: Modern. Phys. Lett. A 22, 783 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Wu, Y.B., Li, S., et al.: Gen. Relativ. Gravit. 39, 653 (2007)ADSMATHCrossRefGoogle Scholar
  24. 24.
    Nodal, Y.L., et al.: Astrophys. Space. Sci. 323, 107 (2009)ADSMATHCrossRefGoogle Scholar
  25. 25.
    Sen, A.A., Cardone, V.F., et al.: Astron. Astrophys. 460, 29 (2006)ADSMATHCrossRefGoogle Scholar
  26. 26.
    Linder, E.V., et al.: Phys. Rev. D 72, 043529 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Gunn, J.E.: Astrophys. J. 218, 592 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    Maor, I., Lahav, O.: JCAP 0507, 003 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, P.: Astrophys. J. 640, 18 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Yoelsy, L.N., Rolando, C., Cardone, V.F.: Space Sci. 323, 107 (2009)CrossRefGoogle Scholar
  31. 31.
    Jenkins, A., et al.: Mon. Not. Roy. Astron. Soc. 321, 372 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Sheth, R.K., Tormen, G.: MNRAS 308, 119 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Spergel, D.N., Bean, R., et al.: Astrophys. J. 170, 377 (2007)CrossRefGoogle Scholar
  34. 34.
    Lamartine, L., Rogerio, R.: JCAP 0607, 009 (2006)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ya-Bo Wu
    • 1
  • Yang-Yang Su
    • 1
  • Jian-Bo Lu
    • 1
  • Yue-Yue Zhao
    • 1
  • Wei-Qiang Yang
    • 2
  • Xue Zhang
    • 1
  • Liang-Liang Lin
    • 1
  1. 1.Department of PhysicsLiaoning Normal UniversityDalianPeople’s Republic of China
  2. 2.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations