General Relativity and Gravitation

, Volume 45, Issue 2, pp 427–448 | Cite as

Hawking temperature in the eternal BTZ black hole: an example of holography in AdS spacetime

  • L. Ortíz
Research Article


We review the relation between AdS spacetime in 1 \(+\) 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.


BTZ black hole Holography AdS spacetime AdS/CFT 



I thank my supervisor, Dr. Bernard S. Kay, for suggesting me to study equilibrium thermal states in AdS spacetime and their relation to equilibrium thermal states in the BTZbh. I also thank him for his guidance and helpful advise during this work. This work was carried out with the sponsorship of CONACYT-Mexico through the grant 302006 and a postdoctoral fellowship.


  1. 1.
    Rehren, K.H.: Algebraic holography. Ann. Henri Poincare 1, 607–623 (2000). arXiv:hep-th/9905179v4Google Scholar
  2. 2.
    Bertola, M., Bros, J., Moschella, U., Schaeffer, R.: A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nucl. Phys. B 587, 619–644 (2000). arXiv:hep-th/9908140v2Google Scholar
  3. 3.
    Kay, B.S., Larkin, P.: Pre-holography. Phys. Rev. D 77, 121501(R) (2008). arXiv:0708.1283v3[hep-th]Google Scholar
  4. 4.
    Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the 2+1 black hole. Phys. Rev. D 48, 1506 (1993). arXiv:gr-qc/9302012v3Google Scholar
  5. 5.
    Kay, B.S., Ortíz, L.: Brick Walls and AdS/CFT (2011). arXiv:1111.6429v1Google Scholar
  6. 6.
    Witten, E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150v2Google Scholar
  7. 7.
    Haag, R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996)Google Scholar
  8. 8.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1984) (reprint)Google Scholar
  9. 9.
    Bayona, B.C.A., Braga, N.R.F.: Anti-de Sitter boundary in poincaré coordinates. Gen. Relativ. Gravit. 39, 1367–1379 (2007). arXiv:hep-th/0512182v3Google Scholar
  10. 10.
    Carlip, S.: Quantum Gravity in \(2 + 1\) Dimensions. Cambridge University Press, Cambridge (1998)Google Scholar
  11. 11.
    Åminneborg, S., Bengtsson, I., Holst, S.: A spinning anti-de Sitter wormhole. Class. Quantum Grav. 16, 363–382 (1999). arXiv:gr-qc/9805028v2Google Scholar
  12. 12.
    Brill, D.: Black Holes and Wormholes in 2+1 Dimensions. Prepared for the 2nd Samos Meeting on Cosmology, Geometry and Relativity: Mathematical and Quantum Aspects of Relativity and Cosmology, Karlovasi, 31 Aug–4 Sep (1998)Google Scholar
  13. 13.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1994) (reprint)Google Scholar
  14. 14.
    Åminneborg, S., Bengtsson, I.: Anti-de Sitter quotients: when are they black holes? Class. Quantum Grav. 25, 095019 (2008). arXiv:0801.3163v2[gr-qc]Google Scholar
  15. 15.
    Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)MathSciNetADSMATHGoogle Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Academic Press, New York (1980)MATHGoogle Scholar
  17. 17.
    Sewell, G.L.: Relativity of temperature and the Hawking effect. Phys. Lett. 79A, 23–24 (1980)MathSciNetADSGoogle Scholar
  18. 18.
    Ortíz, L.: Quantum Fields on BTZ Black Holes. Ph. D. Thesis, The University of York (2011).
  19. 19.
    Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)MathSciNetADSGoogle Scholar
  20. 20.
    Francesco, P.D., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, Berlin (1997)Google Scholar
  21. 21.
    Banach, R., Dowker, J.S.: Automorphic field theory-some mathematical issues. J. Phys. A Math. Gen. 12, 2527–2543 (1979)MathSciNetADSGoogle Scholar
  22. 22.
    Cramer, C.R., Kay, B.S.: Stress-energy must be singular on the Misner space horizon even for automorphic fields. Class. Quantum Gravit. 13, L143 (1996)MathSciNetADSGoogle Scholar
  23. 23.
    Maldacena, J.: Eternal black holes in anti-de-Sitter. J. High Energy Phys. 304, 21 (2003). arXiv:hep-th/0106112v6Google Scholar
  24. 24.
    Keski-Vakkuri, E.: Bulk and boundary dynamics in BTZ black holes. Phys. Rev. D 59, 104001 (1999). arXiv:hep-th/9808037v3Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsThe University of YorkYorkUK
  2. 2.Department of PhysicsUniversity of GuanajuatoLeonMexico
  3. 3.Centro Universitario UAEM Valle de TeotihuacanAxapuscoMexico

Personalised recommendations