Advertisement

General Relativity and Gravitation

, Volume 44, Issue 11, pp 2873–2889 | Cite as

Holographic renormalization of foliation preserving gravity and trace anomaly

  • Yu Nakayama
Research Article

Abstract

From the holographic renormalization group viewpoint, while the scale transformation plays a primary role in holographic dualities by providing the extra dimension, the special conformal transformation seems to only play a secondary role. We, however, claim that the space-time diffeomorphism is crucially related to the latter. For its demonstration, we study the holographic renormalization group flow of a foliation preserving diffeomorphic theory of gravity (a.k.a. space-time flipped Horava gravity). We find that the dual field theory, if any, is only scale invariant but not conformal invariant. In particular, we show that the holographic trace anomaly in four dimension predicts the Ricci scalar squared term that would be incompatible with the Wess–Zumino consistency condition if it were conformal. This illustrates how the foliation preserving diffeomorphic theory of gravity could be in conflict with a theorem of the dual unitary quantum field theory.

Keywords

Horava gravity Trace anomaly Holographic renormalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhmedov E.T.: Phys. Lett. B 442, 152 (1998) [hep-th/9806217]MathSciNetMATHCrossRefADSGoogle Scholar
  2. 2.
    Akhmedov, E.T.: hep-th/0202055Google Scholar
  3. 3.
    Heemskerk I., Polchinski J.: JHEP 1106, 031 (2011) [arXiv:1010.1264 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Faulkner T., Liu H., Rangamani M.: JHEP 1108, 051 (2011) [arXiv:1010.4036 [hep-th]]MathSciNetADSGoogle Scholar
  5. 5.
    Akhmedov E.T., Gahramanov I.B., Musaev E.T.: JETP Lett.. 93, 545 (2011) [arXiv:1006.1970 [hep-th]]CrossRefADSGoogle Scholar
  6. 6.
    Lee S.-S.: Nucl. Phys. B 851, 143 (2011) [arXiv:1011.1474 [hep-th]]MATHGoogle Scholar
  7. 7.
    Douglas M.R., Mazzucato L., Razamat S.S.: Phys. Rev. D 83, 071701 (2011) [arXiv:1011.4926 [hep-th]]CrossRefGoogle Scholar
  8. 8.
    Polchinski J.: Nucl. Phys. B 303, 226 (1988)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Dorigoni, D., Rychkov, V.S.: arXiv:0910.1087 [hep-th]Google Scholar
  10. 10.
    Zamolodchikov, A.B.: JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565]Google Scholar
  11. 11.
    Lüscher, M., Mack, G.: unpublished; 1976 (G. Mack, “Nonperturbative quantum field theory. Proceedings, Nato Advanced Study Institute, cargese, france, July 16–30, 1987”)Google Scholar
  12. 12.
    Pons, J.M.: arXiv:0902.4871 [hep-th]Google Scholar
  13. 13.
    Jackiw R., Pi S.-Y.: J. Phys. A A 44, 223001 (2011) [arXiv:1101.4886 [math-ph]]MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    El-Showk S., Nakayama Y., Rychkov S.: Nucl. Phys. B 848, 578–593 (2011) [arXiv:1101.5385 [hep-th]]MathSciNetMATHGoogle Scholar
  15. 15.
    Fortin J.-F., Grinstein B., Stergiou A.: Phys. Lett. B 704, 74–80 (2011) [arXiv:1106.2540 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Fortin, J.-F., Grinstein, B., Stergiou, A.: [arXiv:1107.3840 [hep-thGoogle Scholar
  17. 17.
    Fortin, J.-F., Grinstein, B., Stergiou, A.: arXiv:1202.4757 [hep-th]Google Scholar
  18. 18.
    Horava P.: JHEP 0903, 020 (2009) [arXiv:0812.4287 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Horava P.: Phys. Rev. D 79, 084008 (2009) [arXiv:0901.3775 [hep-th]]MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mukohyama S.: Class. Quant. Grav. 27, 223101 (2010) [arXiv:1007.5199 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Griffin, T., Horava, P., Melby-Thompson, C.M.: arXiv:1112.5660 [hep-th]Google Scholar
  22. 22.
    Henningson M., Skenderis K.: JHEP 9807, 023 (1998) [hep-th/9806087]MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Duff, M.J.: Class. Quant. Grav. 11, 1387 (1994)[hep-th/9308075]Google Scholar
  24. 24.
    Cardy J.L.: Phys. Lett. B 215, 749–752 (1988)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Jack I., Osborn H.: Nucl. Phys. B 343, 647–688 (1990)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Komargodski, Z., Schwimmer, A.: [arXiv:1107.3987 [hep-thGoogle Scholar
  27. 27.
    Nakayama, Y.: arXiv:1110.2586 [hep-th]Google Scholar
  28. 28.
    Komargodski, Z.: arXiv:1112.4538 [hep-th]Google Scholar
  29. 29.
    Deser S., Schwimmer A.: Phys. Lett. B 309, 279 (1993) [hep-th/9302047]MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Deser S., Duff M.J., Isham C.J.: Phys. Lett. B 93, 419 (1980)CrossRefADSGoogle Scholar
  31. 31.
    Deser S.: Helv. Phys. Acta 69, 570 (1996) [hep-th/9609138]MATHGoogle Scholar
  32. 32.
    Nakayama, Y.: arXiv:1201.3428 [hep-th]Google Scholar
  33. 33.
    Bonora L., Cotta-Ramusino P., Reina C.: Phys. Lett. B 126, 305 (1983)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Bonora L., Pasti P., Bregola M.: Class. Quant. Grav. 3, 635 (1986)MathSciNetMATHCrossRefADSGoogle Scholar
  35. 35.
    Cappelli A., Coste A.: Nucl. Phys. B 314, 707 (1989)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Osborn H.: Nucl. Phys. B 363, 486 (1991)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    Riva V., Cardy J.L.: Phys. Lett. B 622, 339 (2005) [hep-th/0504197]MathSciNetMATHCrossRefADSGoogle Scholar
  38. 38.
    Nakayama Y.: Ann. Phys. 326, 2 (2011) [arXiv:1003.5729 [hep-th]]MathSciNetMATHGoogle Scholar
  39. 39.
    Vasiliev, M.A.: In Shifman, M.A. (ed.) The many faces of the superworld, pp. 533–610 [hep-th/9910096]Google Scholar
  40. 40.
    Nojiri S.’i., Odintsov S.D.: Int. J. Mod. Phys. A 15, 413 (2000) [hep-th/9903033]MathSciNetMATHADSGoogle Scholar
  41. 41.
    Blau M., Narain K.S., Gava E.: JHEP 9909, 018 (1999) [hep-th/9904179]MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Brown J.D., Henneaux M.: Commun. Math. Phys. 104, 207 (1986)MathSciNetMATHCrossRefADSGoogle Scholar
  43. 43.
    Nakayama, Y.: arXiv:0907.0227 [hep-th]Google Scholar
  44. 44.
    Nakayama Y.: JHEP 1001, 030 (2010) [arXiv:0909.4297 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    Nakayama, Y.: arXiv:1009.0491 [hep-th]Google Scholar
  46. 46.
    Nakayama, Y.: arXiv:1107.2928 [hep-th]Google Scholar
  47. 47.
    Hofmanm D.M., Strominger A.: Phys. Rev. Lett. 107, 161601 (2011) [arXiv:1107.2917 [hep-th]]CrossRefADSGoogle Scholar
  48. 48.
    Nakayama, Y.: arXiv:1112.0635 [hep-th]Google Scholar
  49. 49.
    Girardello L., Petrini M., Porrati M., Zaffaroni A.: JHEP 9812, 022 (1998) [arXiv:hep-th/9810126]MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    Freedman D.Z., Gubser S.S., Pilch K., Warner N.P.: Adv. Theor. Math. Phys. 3, 363 (1999) [arXiv:hep-th/9904017]MathSciNetMATHGoogle Scholar
  51. 51.
    Myers, R.C., Sinha, A.: arXiv:1006.1263 [hep-th]Google Scholar
  52. 52.
    Myers R.C., Sinha A.: JHEP 1101, 125 (2011) [arXiv:1011.5819 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    Ryu S., Takayanagi T.: JHEP 0608, 045 (2006) [hep-th/0605073]MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    Solodukhin S.N.: Phys. Lett. B 665, 305 (2008) [arXiv:0802.3117 [hep-th]]MathSciNetCrossRefADSGoogle Scholar
  55. 55.
    Casini H., Huerta M., Myers R.C.: JHEP 1105, 036 (2011) [arXiv:1102.0440 [hep-thMathSciNetCrossRefADSGoogle Scholar
  56. 56.
    Schwimmer A., Theisen S.: Nucl. Phys. B 801, 1 (2008) [arXiv:0802.1017 [hep-th]]MathSciNetGoogle Scholar
  57. 57.
    Banerjee, S.: arXiv:1109.5672 [hep-th]Google Scholar
  58. 58.
    Ryu S., Takayanagi T.: Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001]MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    Luty, M.A., Polchinski, J., Rattazzi, R.: arXiv:1204.5221 [hep-th]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced StudyThe University of TokyoKashiwaJapan

Personalised recommendations