General Relativity and Gravitation

, Volume 44, Issue 11, pp 2687–2709 | Cite as

Hybrid helicity and magneto-vorticity flux conservation in superdense npe-plasma

  • G. Prasad
Research Article


In this paper, it is shown that the magnetic helicity dissipation per unit volume, coupled with the longitudinal conductivity, causes enhancement of the kinematic rotation of the electric (and magnetic) lines if the npe-plasma vorticity vector aligns with the electric (or the magnetic) field. In the case of a rigidly rotating npe-plasma under the influence of a strong magnetic field, the electric lines are rotating faster than the magnetic lines. It is deduced that the orthogonality of the electric and magnetic fields is an essential condition for the conduction current to remain finite in the limit of infinite electric conductivity of the npe-plasma. In this case, the magnetic field is not frozen into the npe-plasma, but the magnetic flux in the magnetic tube is conserved. The hybrid helicity is conserved if the “magneto-vorticity” vector is tangent to the level surfaces of constant entropy per baryon. The “magneto-vorticity” lines are rotating on the level surfaces of constant entropy per baryon due to the electromagnetic energy flow in the direction of the npe-plasma vorticity and the chemical potential variation locked with the kinematic rotation of the npe-plasma flow lines. In the case of an isentropic npe-plasma flow, there exists a family of timelike 2-surfaces spanned by the “magneto-vorticity” lines and the npe-plasma flow lines. In this case, the electric field is normal to such a family of timelike 2-surfaces. Maxwell like equations satisfied by “magneto-vorticity” bivector field are solved in axially symmetric stationary case. It is shown that the npe-plasma is in differential rotation in such a way that its each plasma shell (i.e., plasma surface spanned by “magneto-vorticity” lines) is rotating differentially without continually winding up “magneto-vorticity” lines frozen into the npe-plasma. It is also found that gravitational isorotation and Ferraro’s law of isorotation are intimately connected to each other because of coexistence of both the plasma vorticity and the magnetic field due to interaction between the electromagnetic field and npe-plasma flows.


Hybrid helicity Magneto-vorticity flux Fluid magnetic helicity Superdense npe-plasma Neutron star 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkl, R., Stergioulas, N., Müller, E.: (2010)Google Scholar
  2. 2.
    Ciolfi, R., Ferrari, V., Gualtieri, L., Pons, J.A.: arxiv.astro-ph/09030556 (2010)Google Scholar
  3. 3.
    Beskin V.S.: MHD Flows in Compact Astrophysical Objects. Springer, Berlin (2010)CrossRefGoogle Scholar
  4. 4.
    Gourgoulhon E., Marakis C., Uryu K., Eriguchi Y.: Phys. Rev. D 83, 104007 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Ioka K., Sasaki M.: Astrophys. J. 600, 297 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Ioka K., Sasaki M.: Phys. Rev. D 67, 124026 (2003)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Oron A.: Phys. Rev. D 66, 023006 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Rezzolla L., Ahmedov B.J., Miller J.C.: Mon. Not. R. Astron. Soc. 322, 723 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Amundsen L., Østgaard E.: Nucl. Phys. A 437, 487 (1985a)ADSGoogle Scholar
  10. 10.
    Amundsen L., Østgaard E.: Nucl. Phys. A 442, 163 (1985b)CrossRefADSGoogle Scholar
  11. 11.
    Yakovlev D.G., Shalybkov D.A.: Sov. Astron. Lett. 16(2), 86 (1990)ADSGoogle Scholar
  12. 12.
    Shapiro S.L., Teukolsky S.A.: Black Holes, White Dwarfs and Neutron Stars. Wiley, New York (1983)CrossRefGoogle Scholar
  13. 13.
    Bekenstein J.D., Oron E.: Phys. Rev D 18, 1809 (1978)CrossRefADSGoogle Scholar
  14. 14.
    Haensel P., Urpin V.A., Yakovlev D.G.: Astron. Astrophys. 229, 133 (1990)ADSGoogle Scholar
  15. 15.
    Sang Y., Chanmugam G.: Astrophys. J. 323, L61 (1987)CrossRefADSGoogle Scholar
  16. 16.
    Hoyos J., Reisenegger A., Valdivia J.A.: Astron. Astrophys. 487, 789 (2008)MATHCrossRefADSGoogle Scholar
  17. 17.
    Reisenegger A., Benguria R., Priefo J.P., Araya P.A., Lai D.: Astron. Astrophys. 472, 233 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Reisenegger A., Goldreich P.: Astrophys. J. 323, 161 (1992)Google Scholar
  19. 19.
    Goldreich P., Reisenegger A.: Astrophys. J. 395, 250 (1992)CrossRefADSGoogle Scholar
  20. 20.
    Arras P., Cumming A., Thompson C.: Astrophys. J. 608, L49 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Thompson C., Duncan R.C.: Astrophys. J. 473, 322 (1996)CrossRefADSGoogle Scholar
  22. 22.
    Baym G., Pethick C., Pines D.: Nature 224, 673 (1969)CrossRefADSGoogle Scholar
  23. 23.
    Baym G., Pethick C., Pines D.: Nature 224, 674 (1969)CrossRefADSGoogle Scholar
  24. 24.
    Carter, B.: In: Hazard, C., Mitton, S. (eds.) Active Glactic Nuclei. Cambridge University Press, London, p. 273 (1979)Google Scholar
  25. 25.
    Carter, B.: In: DeWitt, C., DeWitt, B.S., (eds.) Blak Holes—Les Houches. Gordon and Breach, New York (1973)Google Scholar
  26. 26.
    Bekenstein J.D.: Astrophys. J. 319, 207 (1987)CrossRefADSGoogle Scholar
  27. 27.
    Burman R.R.: Aust. J. Phys, 33, 611 (1980)ADSGoogle Scholar
  28. 28.
    Østgaard E., Yakovlev D.G.: Nucl. Phys. A 540, 211 (1992)CrossRefADSGoogle Scholar
  29. 29.
    Lichnerowicz A.: Relativistic Hydrodynamics and Magnetohydrodynamics. Benjamin, New York (1967)MATHGoogle Scholar
  30. 30.
    Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, San Francisco (1973)Google Scholar
  31. 31.
    Reisenegger A.: Astrophys. J. 442, 749 (1995)CrossRefADSGoogle Scholar
  32. 32.
    Reisenegger A., Prieto J.P., Benguria R., Lai D., Araya P.A.: Astron. Astrophys. 472, 233 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Landau L.D., Lifshitz E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960)MATHGoogle Scholar
  34. 34.
    Ellis, G.F.R.: In: Schatzmam, E. (ed.) Cargese Lectures in Physics, vol. 6. Gordon and Breach, New York (1973)Google Scholar
  35. 35.
    Greenberg P.J.: J. Math. Anal. Appl. 30, 128 (1970)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Tsamparlis M., Mason D.P.: J. Math. Phys. 24, 1577 (1983)MathSciNetMATHCrossRefADSGoogle Scholar
  37. 37.
    Carter B.: J. Math. Phys. 10, 70 (1969)MATHCrossRefADSGoogle Scholar
  38. 38.
    Carter B.: Commun. Math. Phys. 17, 233 (1970)MATHCrossRefADSGoogle Scholar
  39. 39.
    Bardeen, J.M.: In: DeWit, C., DeWitt, B.S. (eds.) Black Holes. Gordon and Breach, New York (1973)Google Scholar
  40. 40.
    Novikov, I., Thorne, K.S.: In: DeWit, C., DeWitt, B.S. (eds.) Black Holes. Gordan and Breach, New York (1973)Google Scholar
  41. 41.
    Raychaudhuri A.K.: Mon. Not. R. Astron. Soc. 189, 39 (1979)ADSGoogle Scholar
  42. 42.
    Ostriker J.P., Gunn J.E.: Astrophys. J. 157, 1395 (1969)CrossRefADSGoogle Scholar
  43. 43.
    Bekenstein J.D., Oron E.: Phys. Rev. D 19, 2827 (1979)CrossRefADSGoogle Scholar
  44. 44.
    Glass E.N.: J. Math. Phys. 18, 708 (1977)CrossRefADSGoogle Scholar
  45. 45.
    Mason D.P.: Aust. J. Phys. 29, 413 (1976)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Kamla Nehru Institute of Physical and Social SciencesSultanpurIndia

Personalised recommendations