General Relativity and Gravitation

, Volume 44, Issue 7, pp 1769–1786 | Cite as

Higher-dimensional perfect fluids and empty singular boundaries

Research Article


In order to find out whether empty singular boundaries can arise in higher dimensional Gravity, we study the solution of Einstein’s equations consisting in a (N + 2)-dimensional static and hyperplane symmetric perfect fluid satisfying the equation of state ρ = ηp, being η an arbitrary constant and N ≥ 2. We show that this spacetime has some weird properties. In particular, in the case η > −1, it has an empty (without matter) repulsive singular boundary. We also study the behavior of geodesics and the Cauchy problem for the propagation of massless scalar field in this spacetime. For η > 1, we find that only vertical null geodesics touch the boundary and bounce, and all of them start and finish at z = ∞; whereas non-vertical null as well as all time-like ones are bounded between two planes determined by initial conditions. We obtain that the Cauchy problem for the propagation of a massless scalar field is well-posed and waves are completely reflected at the singularity, if we only demand the waves to have finite energy, although no boundary condition is required.


Gravitation Singularities Higher-dimensional spacetimes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gamboa Saraví R.E.: Int. J. Mod. Phys. A 23, 1995 (2008)ADSMATHCrossRefGoogle Scholar
  2. 2.
    Gamboa Saraví R.E.: Class. Quantum Grav. 25, 045005 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Gamboa Saraví R.E.: Gen. Relativ. Gravit. 41, 1459 (2009)ADSMATHCrossRefGoogle Scholar
  4. 4.
    Gamboa Saraví R.E.: Int. J. Mod. Phys. A 24, 5381 (2009)ADSMATHCrossRefGoogle Scholar
  5. 5.
    Gamboa Saraví R.E., Sanmartino M., Tchamitchian P.: Class. Quantum Grav. 27, 215016 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Tangherlini F.R.: Nuovo Cimento 27, 636 (1963)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ponce de Leon J., Cruz N.: Gen. Relativ. Gravit. 32, 1207 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Bronnikov K.A.: J. Phys. A. Math. Gen. 12, 201 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    Bronnikov K.A., Kovalchuk M.A.: Gen. Relativ. Gravit. 11, 343 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Collins C.B.: J. Math. Phys. 26, 2268 (1985)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Stephani H., Kramer D., Maccallum M., Hoenselaers C., Herlt E.: Exact Solutions to Einstein’s Field Equations. 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  12. 12.
    Novotný J., Horský J.: Czech. J. Phys. B 24, 718 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    Liang C.: J. Math. Phys. 31, 1464 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Taub A.H.: Ann. Math. 53, 472 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1963)Google Scholar
  16. 16.
    Tabenky R., Taub A.H.: Commun. Math. Phys. 29, 61 (1973)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.IFLP, CONICETLa PlataArgentina

Personalised recommendations