Advertisement

General Relativity and Gravitation

, Volume 44, Issue 7, pp 1693–1711 | Cite as

D-branes from classical macroscopic strings

  • Milovan Vasilić
Research Article
  • 74 Downloads

Abstract

This paper is a sequel to the series of papers dedicated to model independent analysis of brane-like extended objects in curved backgrounds. In particular, we study cylindrical membranes wrapped around the extra compact dimension of a (D + 1)-dimensional Riemann–Cartan spacetime. The world-sheet equations are obtained from the universally valid conservation equations of the membrane stress–energy and spin tensors. In the limit of small extra dimension, the dimensionally reduced theory is obtained. The narrow membrane becomes an effective string characterized not only by tension and spin, but also by electric and dilaton charges. The boundary of such an effective string has been shown to live in less spacetime dimensions than its interior. Precisely, the string endpoints are trapped by the surfaces orthogonal to the gradient of the effective dilaton field. The string dynamics has been shown to follow from an action functional subject to the Dirichlet boundary conditions. This way, we have succeeded in obtaining a macroscopic D-brane analogue.

Keywords

Riemann-Cartan spacetime Membrane-like extended objects Dimensional reduction Effective string-like extended objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mathisson M.: Acta. Phys. Pol. 6, 163 (1937)MATHGoogle Scholar
  2. 2.
    Papapetrou A.: Proc. R. Soc. A 209, 248 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Vasilić M., Vojinović M.: Phys. Rev. D 73, 124013 (2006)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Vasilić M., Vojinović M.: J. High Energy Phys. 07, 028 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Vasilić M., Vojinović M.: Phys. Rev. D 78, 104002 (2008)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Vasilić M., Vojinović M.: Phys. Rev. D 81, 024025 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Vasilić M.: Class. Quantum Gravit. 28, 075008 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Nambu Y.: Phys. Rev. D 10, 4262 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    Goto T.: Prog. Theor. Phys. 46, 1560 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Kibble T.W.B.: J. Phys. A 9, 1387 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    Vilenkin A., Shellard E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1995)Google Scholar
  12. 12.
    Durrer R.: New Astron. Rev. 43, 111 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Shellard E.P.S., Allen B.: On the Evolution of Cosmic String. In: Gibbons, G.W., Hawking, S.W., Vachaspati, T. (eds) Formation and Evolution of Cosmic Strings, Cambridge University Press, Cambridge (1990)Google Scholar
  14. 14.
    Hindmarsh M.B., Kibble T.W.B.: Rept. Prog. Phys. 58, 477 (1994)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Hindmarsh M., Stuckey S., Bevis N.: Phys. Rev. D 79, 123504 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Copeland E.J., Kibble T.W.B.: Proc. R. Soc. Lond. A 466, 623 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Jeanerrot R., Rocher J., Sakellariadou M.: Phys. Rev. D 68, 103514 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Nielsen H.B., Olesen P.: Nucl. Phys. B 61, 45 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    Kaplan D.B., Manohar A.: Nucl. Phys. B 302, 280 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Witten E.: Nucl. Phys. B 249, 557 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    Greensite J.: Prog. Part. Nucl. Phys. 51, 1 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    tHooft G.: Nucl. Phys. B 190, 455 (1981)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Mandelstam S.: Phys. Rev. D 19, 2391 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    Nambu Y.: Phys. Rep. C 23, 250 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    Kronfeld A., Schierholz G., Wiese U.J.: Nucl. Phys. B 293, 461 (1987)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Hanany A., Tong D.: J. High Energy Phys. 0307, 037 (2003)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Auzzi R., Bolognesi S., Evslin J., Konishi K., Yung A.: Nucl. Phys. B 673, 187 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Gorsky A., Shifman M., Yung A.: Phys. Rev. D 71, 045010 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Witten E.: Nucl. Phys. B 149, 285 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    Green M.B., Schwarz J.H., Witten E.: Superstring Theory. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  31. 31.
    Polchinski J.: String Theory. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  32. 32.
    Zwiebach B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  33. 33.
    Callan C.G., Friedan D., Martinec E.J., Perry M.J.: Nucl. Phys. B 262, 593 (1985)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Banks T., Nemeschansky D., Sen A.: Nucl. Phys. B 277, 67 (1986)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Callan C.G., Klebanov I.R., Perry M.J.: Nucl. Phys. B 278, 78 (1986)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Fradkin E.S., Tseytlin A.A.: Phys. Lett. B 158, 316 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Fradkin E.S., Tseytlin A.A.: Nucl. Phys. B 261, 1 (1985)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Blagojevic M.: Gravitation and Gauge Symmetries. Institute of Physics Publishing, Bristol (2001)CrossRefGoogle Scholar
  39. 39.
    Yasskin P.B., Stoeger W.R.: Phys. Rev. D 21, 2081 (1980)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Johnson C.: D-branes. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  41. 41.
    Becker K., Becker M., Schwarz J.H.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  42. 42.
    Nepomechie R.I.: Phys. Rev. D 32, 3201 (1985)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Freund P.G.O., Nepomechie R.I.: Nucl. Phys. B 199, 482 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    Green M.B., Schwarz J.H.: Phys. Lett. B 109, 444 (1982)ADSCrossRefGoogle Scholar
  45. 45.
    Huq M., Namazie M.A.: Class. Quantum Gravit. 2, 597 (1985)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Giani F., Pernici M.: Phys. Rev. D 30, 325 (1984)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Campbell I.C.G., West P.C.: Nucl. Phys. B 243, 112 (1984)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Bergshoeff E., Sezgin E., Townsend P.K.: Phys. Lett. B 189, 75 (1987)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Bergshoeff E., Sezgin E., Townsend P.K.: Ann. Phys. (NY) 185, 330 (1988)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Duff M.J., Howe P.S., Inami T., Stelle K.S.: Phys. Lett. B 191, 70 (1987)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Duff M.J., Stelle K.S.: Phys. Lett. B 253, 113 (1991)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Townsend P.K.: Phys. Lett. B 350, 184 (1995)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Witten E.: Nucl. Phys. B 443, 85 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  54. 54.
    Cremmer E., Julia B., Scherk J.: Phys. Lett. B 76, 409 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Physics, University of BelgradeBelgradeSerbia

Personalised recommendations