Skip to main content
Log in

D-branes from classical macroscopic strings

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper is a sequel to the series of papers dedicated to model independent analysis of brane-like extended objects in curved backgrounds. In particular, we study cylindrical membranes wrapped around the extra compact dimension of a (D + 1)-dimensional Riemann–Cartan spacetime. The world-sheet equations are obtained from the universally valid conservation equations of the membrane stress–energy and spin tensors. In the limit of small extra dimension, the dimensionally reduced theory is obtained. The narrow membrane becomes an effective string characterized not only by tension and spin, but also by electric and dilaton charges. The boundary of such an effective string has been shown to live in less spacetime dimensions than its interior. Precisely, the string endpoints are trapped by the surfaces orthogonal to the gradient of the effective dilaton field. The string dynamics has been shown to follow from an action functional subject to the Dirichlet boundary conditions. This way, we have succeeded in obtaining a macroscopic D-brane analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathisson M.: Acta. Phys. Pol. 6, 163 (1937)

    MATH  Google Scholar 

  2. Papapetrou A.: Proc. R. Soc. A 209, 248 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Vasilić M., Vojinović M.: Phys. Rev. D 73, 124013 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. Vasilić M., Vojinović M.: J. High Energy Phys. 07, 028 (2007)

    Article  ADS  Google Scholar 

  5. Vasilić M., Vojinović M.: Phys. Rev. D 78, 104002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Vasilić M., Vojinović M.: Phys. Rev. D 81, 024025 (2010)

    Article  ADS  Google Scholar 

  7. Vasilić M.: Class. Quantum Gravit. 28, 075008 (2011)

    Article  ADS  Google Scholar 

  8. Nambu Y.: Phys. Rev. D 10, 4262 (1974)

    Article  ADS  Google Scholar 

  9. Goto T.: Prog. Theor. Phys. 46, 1560 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Kibble T.W.B.: J. Phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  11. Vilenkin A., Shellard E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  12. Durrer R.: New Astron. Rev. 43, 111 (1999)

    Article  ADS  Google Scholar 

  13. Shellard E.P.S., Allen B.: On the Evolution of Cosmic String. In: Gibbons, G.W., Hawking, S.W., Vachaspati, T. (eds) Formation and Evolution of Cosmic Strings, Cambridge University Press, Cambridge (1990)

    Google Scholar 

  14. Hindmarsh M.B., Kibble T.W.B.: Rept. Prog. Phys. 58, 477 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hindmarsh M., Stuckey S., Bevis N.: Phys. Rev. D 79, 123504 (2008)

    Article  ADS  Google Scholar 

  16. Copeland E.J., Kibble T.W.B.: Proc. R. Soc. Lond. A 466, 623 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Jeanerrot R., Rocher J., Sakellariadou M.: Phys. Rev. D 68, 103514 (2003)

    Article  ADS  Google Scholar 

  18. Nielsen H.B., Olesen P.: Nucl. Phys. B 61, 45 (1973)

    Article  ADS  Google Scholar 

  19. Kaplan D.B., Manohar A.: Nucl. Phys. B 302, 280 (1988)

    Article  ADS  Google Scholar 

  20. Witten E.: Nucl. Phys. B 249, 557 (1985)

    Article  ADS  Google Scholar 

  21. Greensite J.: Prog. Part. Nucl. Phys. 51, 1 (2003)

    Article  ADS  Google Scholar 

  22. tHooft G.: Nucl. Phys. B 190, 455 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  23. Mandelstam S.: Phys. Rev. D 19, 2391 (1978)

    Article  ADS  Google Scholar 

  24. Nambu Y.: Phys. Rep. C 23, 250 (1975)

    Article  ADS  Google Scholar 

  25. Kronfeld A., Schierholz G., Wiese U.J.: Nucl. Phys. B 293, 461 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  26. Hanany A., Tong D.: J. High Energy Phys. 0307, 037 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. Auzzi R., Bolognesi S., Evslin J., Konishi K., Yung A.: Nucl. Phys. B 673, 187 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Gorsky A., Shifman M., Yung A.: Phys. Rev. D 71, 045010 (2005)

    Article  ADS  Google Scholar 

  29. Witten E.: Nucl. Phys. B 149, 285 (1979)

    Article  ADS  Google Scholar 

  30. Green M.B., Schwarz J.H., Witten E.: Superstring Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  31. Polchinski J.: String Theory. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  32. Zwiebach B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  33. Callan C.G., Friedan D., Martinec E.J., Perry M.J.: Nucl. Phys. B 262, 593 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  34. Banks T., Nemeschansky D., Sen A.: Nucl. Phys. B 277, 67 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  35. Callan C.G., Klebanov I.R., Perry M.J.: Nucl. Phys. B 278, 78 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  36. Fradkin E.S., Tseytlin A.A.: Phys. Lett. B 158, 316 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Fradkin E.S., Tseytlin A.A.: Nucl. Phys. B 261, 1 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  38. Blagojevic M.: Gravitation and Gauge Symmetries. Institute of Physics Publishing, Bristol (2001)

    Book  Google Scholar 

  39. Yasskin P.B., Stoeger W.R.: Phys. Rev. D 21, 2081 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  40. Johnson C.: D-branes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  41. Becker K., Becker M., Schwarz J.H.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  42. Nepomechie R.I.: Phys. Rev. D 32, 3201 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  43. Freund P.G.O., Nepomechie R.I.: Nucl. Phys. B 199, 482 (1982)

    Article  ADS  Google Scholar 

  44. Green M.B., Schwarz J.H.: Phys. Lett. B 109, 444 (1982)

    Article  ADS  Google Scholar 

  45. Huq M., Namazie M.A.: Class. Quantum Gravit. 2, 597 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  46. Giani F., Pernici M.: Phys. Rev. D 30, 325 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  47. Campbell I.C.G., West P.C.: Nucl. Phys. B 243, 112 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  48. Bergshoeff E., Sezgin E., Townsend P.K.: Phys. Lett. B 189, 75 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  49. Bergshoeff E., Sezgin E., Townsend P.K.: Ann. Phys. (NY) 185, 330 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  50. Duff M.J., Howe P.S., Inami T., Stelle K.S.: Phys. Lett. B 191, 70 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  51. Duff M.J., Stelle K.S.: Phys. Lett. B 253, 113 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  52. Townsend P.K.: Phys. Lett. B 350, 184 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  53. Witten E.: Nucl. Phys. B 443, 85 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Cremmer E., Julia B., Scherk J.: Phys. Lett. B 76, 409 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Vasilić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilić, M. D-branes from classical macroscopic strings. Gen Relativ Gravit 44, 1693–1711 (2012). https://doi.org/10.1007/s10714-012-1360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1360-5

Keywords

Navigation