Skip to main content
Log in

Neutrino trapping in extremely compact objects described by the internal Schwarzschild-(anti-)de Sitter spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Extremely compact stars (ECS) (having radius R < 3GM/c 2) contain captured null geodesics. Certain part of neutrinos produced in their interior will be trapped, influencing thus their neutrino luminosity and thermal evolution. The trapping effect has been previously investigated for the internal Schwarzschild spacetimes with the uniform distribution of energy density. Here, we extend our earlier study considering the influence of the cosmological constant Λ on the trapping phenomena. Our model for the interior of ECS is based on the internal Schwarzschild-(anti-)de Sitter (S(a)dS) spacetimes with uniform distribution of energy density matched to the external vacuum S(a)dS spacetime with the same cosmological constant. Assuming uniform and isotropic distribution of local neutrino emissivity we determine behavior of the trapping coefficients, i.e., “global” one representing influence on the neutrino luminosity and “local” one representing influence on the cooling process. We demonstrate that the repulsive (attractive) cosmological constant has tendency to enhance (damp) the trapping phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdujabbarov A., Ahmedov B.: Test particle motion around a black hole in a braneworld. Phys. Rev. D 81(4), 044022 (2010)

    Article  ADS  Google Scholar 

  2. Abramowicz M.A., Andersson N., Bruni M., Ghosh P., Sonego S.: Gravitational waves from ultracompact stars: the optical geometry view of trapped modes. Class. Quantum Gravit. 14, L189–L194 (1997)

    Article  ADS  Google Scholar 

  3. Abramowicz M.A., Miller J.C., Stuchlík Z.: Concept of radius of gyration in general relativity. Phys. Rev. D 47, 1440–1447 (1993)

    Article  ADS  Google Scholar 

  4. Akmal A., Pandharipande V.R., Ravenhall D.G.: Equation of state of nucleon matter and neutron star structure. Phys. Rev. C 58, 1804–1828 (1998)

    Article  ADS  Google Scholar 

  5. Bahcall S., Lynn B.W., Selipsky S.B.: Are neutron stars Q-stars?. Nucl. Phys. B 331, 67–79 (1990)

    Article  ADS  Google Scholar 

  6. Bin-Nun A.Y.: Relativistic images in Randall–Sundrum II braneworld lensing. Phys. Rev. D 81(12), 123011 (2010)

    Article  ADS  Google Scholar 

  7. Boeckel J., Schaffner-Bielich T.: A little inflation in the early universe at the QCD phase transition. Phys. Rev. Lett. 105(4), 041301 (2010)

    Article  ADS  Google Scholar 

  8. Boeckel, T., Schaffner-Bielich, J.: A little inflation at the cosmological QCD phase transition. ArXiv 1105.0832v2 [astro-ph.CO] (2011)

  9. Böhmer C.G., Harko T., Lobo F.S.N.: Solar system tests of brane world models. Class. Quantum Gravit. 25(4), 045015 (2008)

    Article  ADS  Google Scholar 

  10. Caldwell R.R., Kamionkowski M.: The physics of cosmic acceleration. Annu. Rev. Nucl. Part. Sci. 59, 397–429 (2009)

    Article  ADS  Google Scholar 

  11. Dadhich N., Maartens R., Papadopoulos P., Rezania V.: Black holes on the brane. Phys. Lett. B 487, 1–6 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Gandolfi S., Illarionov A.Y., Fantoni S., Miller J.C., Pederiva F., Schmidt K.E.: Microscopic calculation of the equation of state of nuclear matter and neutron star structure. Mon. Not. R. Astron. Soc. 404, L35–L39 (2010)

    Article  ADS  Google Scholar 

  13. Germani C., Maartens R.: Stars in the braneworld. Phys. Rev. D 64, 124010 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  14. Glendenning N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. Springer, New York (2000)

    MATH  Google Scholar 

  15. Haensel, P., Potekhin, A.Y., Yakovlev, D.G. (eds.): Neutron Stars 1: Equation of State and Structure. Astrophysics and Space Science Library, vol. 326. Springer, New York (2007)

    Google Scholar 

  16. Hladík J., Stuchlík Z.: Photon and neutrino redshift in the field of braneworld compact stars. J. Cosmol. Astropart. Phys. 7, 12 (2011)

    Article  ADS  Google Scholar 

  17. Horowitz G.T.: Surprising connections between general relativity and condensed matter. Class. Quantum Gravit. 28(11), 114008 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  18. Hubeny, V.E.: Holographic insights and puzzles. ArXiv 1103.1999 [hep-th] (2011)

  19. Klähn T., Blaschke D., Typel S., van Dalen E.N.E., Faessler A., Fuchs C., Gaitanos T., Grigorian H., Ho A., Kolomeitsev E.E., Miller M.C., Röpke G., Trümper J., Voskresensky D.N., Weber F., Wolter H.H.: Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions. Phys. Rev. C 74(3), 035802 (2006)

    Article  ADS  Google Scholar 

  20. Kološ M., Stuchlík Z.: Current-carrying string loops in black-hole spacetimes with a repulsive cosmological constant. Phys. Rev. D 82(12), 125012 (2010)

    Article  ADS  Google Scholar 

  21. Kotrlová A., Stuchlík Z., Török G.: Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models. Class. Quantum Gravit. 25, 225016 (2008)

    Article  ADS  Google Scholar 

  22. Krauss L.M., Turner M.S.: The cosmological constant is back. Gen. Relativ. Gravit. 27, 1137–1144 (1995)

    Article  ADS  MATH  Google Scholar 

  23. Lattimer J.M., Prakash M.: Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442, 109–165 (2007)

    Article  ADS  Google Scholar 

  24. Linde A.: Particle physics and cosmology. Prog. Theor. Phys. Suppl. 85, 279–292 (1985)

    Article  ADS  Google Scholar 

  25. Linde A.D.: Phase transitions in gauge theories and cosmology. Rep. Prog. Phys. 42, 389–437 (1979)

    Article  ADS  Google Scholar 

  26. Miller J.C., Shahbaz T., Nolan L.A.: Are Q-stars a serious threat for stellar-mass black hole candidates?. Mon. Not. R. Astron. Soc. 294, L25–L29 (1998)

    Article  ADS  Google Scholar 

  27. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman and Co, San Francisco (1973)

    Google Scholar 

  28. Morozova V.S., Ahmedov B.J.: Electromagnetic fields of slowly rotating compact magnetized stars in braneworld. Astrophys. Space Sci. 333, 133–142 (2011)

    Article  ADS  MATH  Google Scholar 

  29. Morozova V.S., Ahmedov B.J., Abdujabbarov A.A., Mamadjanov A.I.: Plasma magnetosphere of rotating magnetized neutron star in the braneworld. Astrophys. Space Sci. 330, 257–266 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Nilsson U.S., Uggla C.: General relativistic stars: polytropic equations of state. Ann. Phys. 286, 292–319 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Østgaard E.: Internal structure of neutron stars. In: Hledík, S., Stuchlík, Z. (eds.) RAGtime 2/3: Workshops on Black Holes and Neutron Stars, pp. 73–102. Silesian University at Opava, Opava (2001)

    Google Scholar 

  32. Prikas A.: Q-Stars in anti de Sitter spacetime. Gen. Relativ. Gravit. 36, 1841–1869 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Rhoades C.E., Ruffini R.: Maximum mass of a neutron star. Phys. Rev. Lett. 32, 324–327 (1974)

    Article  ADS  Google Scholar 

  34. Rikovska Stone J., Miller J.C., Koncewicz R., Stevenson P.D., Strayer M.R.: Nuclear matter and neutron-star properties calculated with the Skyrme interaction. Phys. Rev. C 68(3), 034324 (2003)

    Article  ADS  Google Scholar 

  35. Schee J., Stuchlík Z.: Optical phenomena in the field of braneworld Kerr black holes. Int. J. Mod. Phys. D 18, 983–1024 (2009)

    Article  ADS  MATH  Google Scholar 

  36. Schee J., Stuchlík Z.: Profiles of emission lines generated by rings orbiting braneworld Kerr black holes. Gen. Relativ. Gravit. 41, 1795–1818 (2009)

    Article  ADS  MATH  Google Scholar 

  37. Schwarzschild, K.: Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. Sitzungsber. K. Preuss. Akad. Wiss., Phys.–Math. Kl. 424–434 (1916)

  38. Shapiro S.L., Teukolsky S.A.: Black holes, white dwarfs and neutron stars: the physics of compact objects. Wiley, New York (1983)

    Book  Google Scholar 

  39. Stuchlík Z.: The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Czech. 34, 129–149 (1983)

    ADS  MATH  Google Scholar 

  40. Stuchlík Z.: Note on the properties of the Schwarzschild-de-Sitter spacetime. Bull. Astron. Inst. Czech. 41, 341–343 (1990)

    ADS  Google Scholar 

  41. Stuchlík Z.: Spherically symmetric static configurations of uniform density in spacetimes with a non-zero cosmological constant. Acta Phys. Slov. 50, 219–228 (2000)

    Google Scholar 

  42. Stuchlík Z.: Influence of the relict cosmological constant on accretion discs. Mod. Phys. Lett. A 20, 561–575 (2005)

    Article  ADS  MATH  Google Scholar 

  43. Stuchlík Z., Hladík J., Urbanec M.: Neutrino trapping in braneworld extremely compact stars. Gen. Relativ. Gravit. 43, 3163–3190 (2011)

    Article  ADS  MATH  Google Scholar 

  44. Stuchlík Z., Hledík S.: Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D 60(4), 044006 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  45. Stuchlík Z., Hledík S.: Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant. Class. Quantum Gravit. 17, 4541–4576 (2000)

    Article  ADS  MATH  Google Scholar 

  46. Stuchlík Z., Hledík S., Šoltés J., Østgaard E.: Null geodesics and embedding diagrams of the interior Schwarzschild-de Sitter spacetimes with uniform density. Phys. Rev. D 64(4), 044004 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  47. Stuchlík Z., Kotrlová A.: Orbital resonances in discs around braneworld Kerr black holes. Gen. Relativ. Gravit. 41, 1305–1343 (2009)

    Article  ADS  MATH  Google Scholar 

  48. Stuchlík Z., Kovář J.: Pseudo-Newtonian gravitational potential for Schwarzschild-de Sitter space-times. Int. J. Mod. Phys. D 17, 2089–2105 (2008)

    Article  ADS  MATH  Google Scholar 

  49. Stuchlík Z., Schee J.: Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of milky way. J. Cosmol. Astropart. Phys. 9, 18 (2011)

    Article  ADS  Google Scholar 

  50. Stuchlík Z., Slaný P., Hledík S.: Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes. Astron. Astrophys. 363, 425–439 (2000)

    ADS  Google Scholar 

  51. Stuchlík Z., Slaný P., Kovář J.: Pseudo-Newtonian and general relativistic barotropic tori in Schwarzschild-de Sitter spacetimes. Class. Quantum Gravit. 26(21), 215013 (2009)

    Article  ADS  Google Scholar 

  52. Stuchlík Z., Török G., Hledík S., Urbanec M.: Neutrino trapping in extremely compact objects: I. Efficiency of trapping in the internal Schwarzschild spacetimes. Class. Quantum Gravit. 26, 035003 (2009)

    Article  ADS  Google Scholar 

  53. Urbanec M., Běták E., Stuchlík Z.: Observational tests of neutron star relativistic mean field equations of state. Acta Astron. 60, 149–163 (2010)

    ADS  Google Scholar 

  54. Weber F.: Pulsars as astrophysical laboratories for nuclear and particle physics. Taylor & Francis, London (1999)

    Google Scholar 

  55. Weber F., Glendenning N.K.: Application of the improved Hartle method for the construction of general relativistic rotating neutron star models. Astrophys. J. 390, 541–549 (1992)

    Article  ADS  Google Scholar 

  56. Witten E.: Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  57. Witten E.: The cosmological constant from the viewpoint of string theory. In: Cline, D.B. (ed.) Sources and Detection of Dark Matter and Dark Energy in the Universe, pp. 27. Springer, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hladík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuchlík, Z., Hladík, J., Urbanec, M. et al. Neutrino trapping in extremely compact objects described by the internal Schwarzschild-(anti-)de Sitter spacetimes. Gen Relativ Gravit 44, 1393–1417 (2012). https://doi.org/10.1007/s10714-012-1346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1346-3

Keywords

Navigation