General Relativity and Gravitation

, Volume 44, Issue 4, pp 941–957 | Cite as

A rotating three component perfect fluid source and its junction with empty space-time

  • R. J. Wiltshire
Research Article


The Kerr solution for empty space-time is presented in an ellipsoidally symmetric coordinate system and it is used to produce generalised ellipsoidal metrics appropriate for the generation of rotating interior solutions of Einstein’s equations. It is shown that these solutions are the familiar static perfect fluid cases commonly derived in curvature coordinates but now endowed with rotation. These are also shown to be potential fluid sources for not only Kerr but also Kerr-de Sitter empty space-time. The approach is further discussed in the context of T-solutions of Einstein’s equations and the vacuum T-solution outside a rotating source is presented. The interior source for these solutions is shown not to be a perfect fluid but rather an anisotropic three component perfect fluid for which the energy momentum tensor is derived. The Schwarzschild interior solution is given as an example of the approach.


Fluid sources Rotation Kerr-de-Sitter T-solutions Junction conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr R.P.: Phys. Rev. Lett. 11, 237 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Pichon C., Lynden-Bell D.: Mon. Not. Roy. Soc. 280, 1007 (1996)ADSGoogle Scholar
  3. 3.
    Wahlquist H.D.: Phys. Rev. 172, 1291 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    Bradley M., Fodor G., Marklund M., Perjés Z.: Class Quantum Gravity 17, 351 (2000)ADSMATHCrossRefGoogle Scholar
  5. 5.
    Sarnobat P., Hoenselaers C.A.: Class Quantum Gravity 23, 5603 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Hartle J.B.: Astro. Phys. J. 150, 1005 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Wiltshire R.J., Messenger P.: Gen. Relativ. Gravit. 36, 1213 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Darmois G.: Mémorial des Sciences Mathématiques, vol. 25. Gautier-Villars, Paris (1927)Google Scholar
  9. 9.
    Bonnor W.B., Vickers P.A.: Gen. Relativ. Gravit. 13, 29 (1981)ADSGoogle Scholar
  10. 10.
    Hernandez W.C.: Phys. Rev. 159, 1070 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    Letelier P.S.: Phys. Rev. D 22, 807 (1980)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Mak M.K., Harko T.: Proc R. Soc Lond A 459, 393 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Sharma R., Maharaj S.D.: Mon. Not. Roy. Astron. Soc. 375, 1265 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Bowers R.L., Liang E.P.T.: Astrophys. J. 188, 657 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    Delgaty M.S.R., Lake K.: Comput. Phys. Commun. 115, 395 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Herrera L., Santos N.O.: Phys. Rep. 286, 53 (1997)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Stephani H., Kramer D., Maccullum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Islam J.N.: Rotating Fields in General Relativity. Cambridge University Press, Cambridge (1985)MATHCrossRefGoogle Scholar
  19. 19.
    Krasiński A.: Ann. Phys 112, 22 (1978)ADSMATHCrossRefGoogle Scholar
  20. 20.
    Rácz I.: Class Quantum Gravity 9, L93 (1992)MATHCrossRefGoogle Scholar
  21. 21.
    Zsigrai J.: Class Quantum Gravity 20, 2855 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Boyer R.H., Lindquist R.W.: J. Math. Phys. 8, 265 (1967)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Carter, B.: In: DeWitt, B.,DeWitt, C.M. (eds.) Les Astres Occlus, Gordon and Breach, New York (1973)Google Scholar
  24. 24.
    Akcay S., Matzner R.A.: Class Quantum Gravity 28, 85012 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Novikov I.D.: Sov. Astron. 5, 423 (1961)ADSGoogle Scholar
  26. 26.
    Novikov I.D., Zeldovich Y.B.: Relativistic Astrophysics, vol. 1, Stars and Relativity. University of Chicago Press, Chicago (1971)Google Scholar
  27. 27.
    McVittie G.C., Wiltshire R.J.: Int. J. Theor. Phys. 14, 145 (1975)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chandrasekhar S.: Ellipsoidal Figures of Equilibrium. Dover Publications Inc, New York (1987)Google Scholar
  29. 29.
    Tolman R.C.: Phys. Rev. 55, 364 (1939)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of GlamorganPontypriddUK

Personalised recommendations