General Relativity and Gravitation

, Volume 43, Issue 12, pp 3247–3251 | Cite as

General relativity at Syracuse in the mid-fifties

Review Article


A brief survey is given of the work of the relativity group at Syracuse University during the period 1953–1957. The two main thrusts of the research during this period were the search for the true observables of general relativity and the construction of a suitable commutator bracket.


Observables Commutators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg J.: Syracuse 1949–1952. In: Kox, A.J., Eisenstaedt, J. (eds) The universe of general relativity, pp. 357–371. Birkhäuser, Boston (2005)CrossRefGoogle Scholar
  2. 2.
    Newman E.T.: A biased and personal description of GR at Syracuse University, 1951–1961. In: Kox, A.J., Eisenstaedt, J. (eds) The universe of general relativity, pp. 373–383. Birkhäuser, Boston (2005)CrossRefGoogle Scholar
  3. 3.
    Newman E., Bergmann P.G.: Observables in singular theories by systematic approximations. Rev. Mod. Phys. 29, 443 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bergmann P.G., Janis A.I.: Subsidiary conditions in covariant theories. Phys. Rev. 111, 1191 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Newman E., Bergmann P.G.: Lagrangians linear in the “velocities”. Phys. Rev. 99, 587 (1955)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Dirac P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129 (1950)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dirac P.A.M.: The Hamiltonian form of field dynamics. Can. J. Math. 3, 1 (1951)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bergmann P.G., Goldberg I.: Dirac bracket transformations in phase space. Phys. Rev. 98, 531 (1955)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Bergmann P.G.: Existence of dirac generating functions. Phys. Rev. 98, 544 (1955)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Bergmann P.G., Goldberg I., Janis A., Newman E.: Canonical transformations and commutators in the Lagrangian formalism. Phys. Rev. 103, 807 (1956)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Bergmann P.G.: On Einstein’s λ transformations. Phys. Rev. 103, 780 (1956)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Bergmann P.G.: Two-component spinors in general relativity. Phys. Rev. 107, 624 (1957)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA

Personalised recommendations