General Relativity and Gravitation

, Volume 43, Issue 12, pp 3301–3312 | Cite as

Electromagnetic sources distributed on shells in a Schwarzschild background

  • N. Gürlebeck
  • J. Bičák
  • A. C. Gutiérrez-Piñeres
Research Article


In the Introduction we briefly recall our previous results on stationary electromagnetic fields on black hole backgrounds and the use of spin-weighted spherical harmonics. We then discuss static electric and magnetic test fields in a Schwarzschild background using some of these results. As sources we do not consider point charges or current loops like in previous works, rather, we analyze spherical shells with smooth electric or magnetic charge distributions as well as electric or magnetic dipole distributions depending on both angular coordinates. Particular attention is paid to the discontinuities of the field, of the 4-potential, and their relation to the source.


Electrostatics in curved backgrounds Monopole and dipole layers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg J.N., Macfarlane A.J., Newman E.T., Rohrlich F., Sudarshan E.C.G.: Spin-s spherical harmonics and \({\eth}\). J. Math. Phys. 8, 2155 (1967)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Newman, E.T.: A biased and personal description of GR at Syracuse University, 1951–61 (2002).
  3. 3.
    Bičák J., Slavík J.: Non-linear electrodynamics in the Newman-Penrose formalism. Acta Phys. Pol. B6, 489 (1975)Google Scholar
  4. 4.
    Newman E.T., Penrose R.: 10 exact gravitationally-conserved quantities. Phys. Rev. Lett. 15(6), 231 (1965)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Glass E.N., Goldberg J.N.: Newman-Penrose constants and their invariant transformations. J. Math. Phys. 11, 3400 (1970)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Goldberg J.N.: Conservation of the Newman-Penrose conserved quantities. Phys. Rev. Lett. 28(21), 1400 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    Teukolsky S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J. 185, 635 (1973)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Bičák J., Dvořák L.: Stationary electromagnetic fields around black holes. I. General solutions and the fields of some special sources near a Schwarzschild black hole. Czech. J. Phys. 27, 127 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    Bičák J., Dvořák L.: Stationary electromagnetic fields around black holes. II. General solutions and the fields of some special sources near a Kerr black hole. Gen. Relativ. Gravit. 7, 959 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    Bičák J.: On the theories of the interacting perturbations of the Reissner-Nordström black hole. Czech. J. Phys. 29, 945 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Bičák J., Dvořák L.: Stationary electromagnetic fields around black holes. III. General solutions and the fields of current loops near the Reissner-Nordström black hole. Phys. Rev. D 22, 2933 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Bičák J., Stuchlík Z., Šob M.: Scalar fields around a charged, rotating black hole. Czech. J. Phys. 28, 121 (1978)ADSCrossRefGoogle Scholar
  13. 13.
    Thorne, K.S., Price, R.H., Macdonald, D.A.: Black holes: the membrane paradigm (Yale University Press, 1986).
  14. 14.
    Punsly B.: Black Hole Gravitohydrodynamics. Springer, Berlin (2008)Google Scholar
  15. 15.
    Bičák J., Ledvinka T.: Electromagnetic fields around black holes and Meissner effect. Nuov. Cim. B Serie 115, 739 (2000)ADSGoogle Scholar
  16. 16.
    Chamblin A., Emparan R., Gibbons G.W.: Superconducting p-branes and extremal black holes. Phys. Rev. D 58(8), 084009 (1998)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Bičák J., Gürlebeck N.: Spherical gravitating condensers in general relativity. Phys. Rev. D 81(10), 104022 (2010)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Gürlebeck N., Bičák J., Gutiérrez-Piñeres A.C.: Monopole and dipole layers in curved spacetimes: formalism and examples. Phys. Rev. D 83(12), 124023 (2011)CrossRefGoogle Scholar
  19. 19.
    Jackson J.D.: Classical Electrodynamics. 3rd edn. Wiley, New York (1998)Google Scholar
  20. 20.
    Kuchař K.: Charged shells in general relativity and their gravitational collapse. Czech. J. Phys. 18, 435 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G.: Higher transcendental functions, vol. I. McGraw-Hill Book Company, New York (1953)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • N. Gürlebeck
    • 1
    • 2
  • J. Bičák
    • 1
    • 2
  • A. C. Gutiérrez-Piñeres
    • 3
  1. 1.Institute of Theoretical PhysicsCharles UniversityPragueCzech Republic
  2. 2.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany
  3. 3.Facultad de Ciencias BásicasUniversidad Tecnológica de BolívarCartagena de IndiasColombia

Personalised recommendations