Advertisement

An exact conformal symmetry Ansatz on Kaluza-Klein reduced TMG

  • George Moutsopoulos
  • Patricia Ritter
Research Article

Abstract

Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.

Keywords

Topologically massive gravity Kaluza-Klein reduction Solutions 

References

  1. 1.
    Deser S., Jackiw R., Templeton S.: Ann. Phys. 140, 372 (1982). doi: 10.1016/0003-4916(82)90164-6 MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Deser S., Jackiw R., Templeton S.: Phys. Rev. Lett. 48, 975 (1982). doi: 10.1103/PhysRevLett.48.975 ADSCrossRefGoogle Scholar
  3. 3.
    Anninos D., Li W., Padi M., Song W., Strominger A.: J. High Energy Phys. 03, 130 (2009). doi: 10.1088/1126-6708/2009/03/130 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Guica M., Skenderis K., Taylor M., van Rees B.C.: J. High Energy Phys. 02, 056 (2011). doi: 10.1007/JHEP02(2011)056 ADSCrossRefGoogle Scholar
  5. 5.
    Anninos D., Compere G., de Buyl S., Detournay S., Guica M.: J. High Energy Phys. 1011, 119 (2010). doi: 10.1007/JHEP11(2010)119 ADSCrossRefGoogle Scholar
  6. 6.
    Chow D.D.K., Pope C.N., Sezgin E.: Class. Quant. Grav. 27, 105002 (2010). doi: 10.1088/0264-9381/27/10/105002 MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Gibbons G.W., Pope C.N., Sezgin E.: Class. Quant. Grav. 25, 205005 (2008). doi: 10.1088/0264-9381/25/20/205005 MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Chow D.D.K., Pope C.N., Sezgin E.: Class. Quant. Grav. 27, 105001 (2010). doi: 10.1088/0264-9381/27/10/105001 MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Ertl S., Grumiller D., Johansson N.: Class. Quant. Grav. 27, 225021 (2010). doi: 10.1088/0264-9381/27/22/225021 MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Guralnik G., Iorio A., Jackiw R., Pi S.Y.: Ann. Phys. 308, 222 (2003). doi: 10.1016/S0003-4916(03)00142-8 MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Grumiller D., Kummer W.: Ann. Phys. 308, 211 (2003). doi: 10.1016/S0003-4916(03)00138-6 MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Cvetic M., Gibbons G.W., Lu H., Pope C.N.: Class. Quant. Grav. 20, 5161 (2003). doi: 10.1088/0264-9381/20/23/013 MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Pons J.M.: J. Phys. Conf. Ser. 68, 012030 (2007). doi: 10.1088/1742-6596/68/1/012030 ADSCrossRefGoogle Scholar
  14. 14.
    Torre, C.: Symmetric criticality in classical field theory. In: Proceedings of SPIRES Conference C10/09/06.1. arXiv:1011.3429 [math-ph] (to appear)Google Scholar
  15. 15.
    Clement G.: Class. Quant. Grav. 7, L193 (1990). doi: 10.1088/0264-9381/7/9/002 MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Coley A., Hervik S., Pelavas N.: Class. Quant. Grav. 25, 025008 (2008). doi: 10.1088/0264-9381/25/2/025008 MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Jugeau F., Moutsopoulos G., Ritter P.: Class. Quant. Grav. 28, 035001 (2011). doi: 10.1088/0264-9381/28/3/035001 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Clement G.: Class. Quant. Grav. 11, L115 (1994). doi: 10.1088/0264-9381/11/9/001 MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ElectrophysicsNational Chiao-Tung UniversityHsinchuTaiwan
  2. 2.Maxwell Institute and School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations