Advertisement

General Relativity and Gravitation

, Volume 43, Issue 8, pp 2115–2125 | Cite as

Tunneling effect of Dirac particles from the non-extremal black hole in D = 5, SO(6) gauged supergravity

  • Hui-Ling Li
  • Rong Lin
Research Article

Abstract

Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man’s fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from the non-extremal black hole in D = 5, SO(6) gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods.

Keywords

Hawking radiation Dirac particles Non-extremal black hole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking S.W.: Nature 248, 30 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    Hawking S.W.: Commun. Math. Phys. 43, 199 (1975)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Parikh M.K., Wilczek F.: Phys. Rev. Lett. 85, 5042 (2000)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Parikh M.K.: Phys. Lett. B 546, 189 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Srinivasan K., Padmanabhan T.: Phys. Rev. D 60, 024007 (1999)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Padmanabhan T., Srinivasan K.: Class. Quantum Grav. 19, 2671 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Angheben M., Nadalini M., Vanzo L., Zerbini S.: J. High Energy Phys. 0505, 014 (2005)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Vagenas E.C.: Phys. Lett. B 533, 302 (2002)ADSMATHCrossRefGoogle Scholar
  9. 9.
    Zhang J.Y., Zhao Z.: Phys. Lett. B 618, 14 (2005)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Zhang J.Y., Zhao Z.: Nucl. Phys. B 725, 173 (2005)ADSMATHCrossRefGoogle Scholar
  11. 11.
    Ma Z.Z.: Phys. Lett. B 666, 376 (2008)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Arzano M., Medved A.J.M., Vagenas E.C.: J. High Energy Phys. 0509, 037 (2005)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Arzano M.: Mod. Phys. Lett. A 21, 41 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Sarkar S., Kothawala D.: Phys. Lett. B 659, 683 (2008)MathSciNetADSGoogle Scholar
  15. 15.
    Jiang Q.Q., Wu S.Q., Cai X.: Phys. Lett. B 647, 200 (2007)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Jiang Q.Q., Wu S.Q., Cai X.: Phys. Rev. D 75, 064029 (2007)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Zhang L.C., Wu Y.Q., Li H.F., Zhao R.: Europhys. Lett. 86, 59002 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Zhao R., Zhang S.L.: Phys. Lett. B 641, 208 (2006)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zhao R., Zhang S.L.: Phys. Lett. B 641, 318 (2006)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Kerner R., Mann R.B.: Phys. Rev. D 73, 104010 (2006)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Kerner R., Mann R.B.: Phys. Rev. D 75, 084022 (2007)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Medved A.J.M.: Phys. Rev. D 66, 124009 (2002)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Liu W.B.: Phys. Lett. B 634, 541 (2006)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Banerjee R., Majhi B.R.: J. High Energy Phys. 0806, 095 (2008)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Banerjee R., Majhi B.R.: Phys. Lett. B 674, 218 (2009)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Wu X., Gao S.: Phys. Rev. D 75, 044027 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Kerner R., Mann R.B.: Class. Quantum Grav. 25, 095014 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Li R., Ren J.R.: Phys. Lett. B 661, 370 (2008)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Li H.L., Cai M., Lin R.: Gen. Relativ. Gravit. 41, 2389 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Kerner R., Mann R.B.: Phys. Lett. B 665, 277 (2008)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Chen D.Y., Jiang Q.Q., Zu X.T.: Phys. Lett. B 665, 106 (2008)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Chen D.Y., Yang H.T., Zu X.T.: Eur. Phys. J. C 56, 119 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Chen D.Y., Yang H.T., Zu X.T.: Phys. Lett. B 681, 463 (2009)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Li R., Ren J.R., Shi D.F.: Phys. Lett. B 670, 446 (2009)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Criscienzo R.D., Vanzo L.: Europhys. Lett. 82, 60001 (2008)CrossRefGoogle Scholar
  36. 36.
    Lin K., Yang S.Z.: Phys. Rev. D 79, 064035 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Lin K., Yang S.Z.: Phys. Lett. B 674, 127 (2009)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Lin K., Yang S.Z.: Phys. Lett. B 680, 506 (2009)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Jiang Q.Q.: Phys. Rev. D 78, 044009 (2008)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Jiang Q.Q.: Phys. Lett. B 666, 517 (2008)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Li H.L., Qi W.Y., Lin R.: Phys. Lett. B 677, 332 (2009)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Hawking S.W., Hunter C.J., Taylor-Robinson M.M.: Phys. Rev. D 59, 064005 (1999)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Chong Z.W., Cvetic̆ M., Lü H., Pope C.N.: Phys. Rev. Lett. 95, 161301 (2005)ADSMATHCrossRefGoogle Scholar
  44. 44.
    Chong Z.W., Cvetic̆ M., Lü H., Pope C.N.: Phys. Lett. B 644, 192 (2007)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Mei J.W., Pope C.N.: Phys. Lett. B 658, 64 (2007)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Lü H., Mei J.W., Pope C.N.: Nucl. Phys. B 806, 436 (2008)CrossRefGoogle Scholar
  47. 47.
    Cvetic̆ M., Lü H., Pope C.N.: Phys. Rev. D 70, 081502 (2004)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Cvetic̆ M., Lü H., Pope C.N.: Phys. Lett. B 598, 273 (2004)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Gimon E.G., Hashimoto A.: Phys. Rev. Lett. 91, 021601 (2003)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Kunduri H.K., Lucietti J., Reall H.S.: J. High Energy Phys. 0604, 036 (2006)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Wu S.Q.: Phys. Rev. Lett. 100, 121301 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Wu S.Q.: Class. Quantum Grav. 26, 055001 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Arkani-Hamed N., Dimopoulos S., Dvali G.: Phys. Lett. B 429, 263 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    Kaloper N., March-Russell J., Starkman G.D., Trodden M.: Phys. Rev. Lett. 85, 928 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  55. 55.
    Randall L., Sundrum R.: Phys. Rev. Lett. 83, 3370 (1999)MathSciNetADSCrossRefMATHGoogle Scholar
  56. 56.
    Dimopoulos S., Landsberg G.: Phys. Rev. Lett. 87, 161602 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Giddings S.B., Thomas S.: Phys. Rev. D 65, 056010 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    Chong Z.W., Cvetic̆ M., Lü H., Pope C.N.: Phys. Rev. D 72, 041901 (2005)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Davis P.: Class. Quantum Grav. 23, 6829 (2006)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Physics Science and TechnologyShenyang Normal UniversityShenyangChina

Personalised recommendations