Advertisement

General Relativity and Gravitation

, Volume 43, Issue 5, pp 1365–1390 | Cite as

Reconsiderations on the formulation of general relativity based on Riemannian structures

  • R. Cartas-Fuentevilla
  • A. Escalante-Hernandez
  • J. A. Lopez-Osio
  • J. M. Solano-Altamirano
  • J. F. Tlapanco-Limon
  • J. Berra-Montiel
  • P. Enriquez-Silverio
Research Article

Abstract

We prove that some basic aspects of gravity commonly attributed to the modern connection-based approaches, can be reached naturally within the usual Riemannian geometry-based approach, by assuming the independence between the metric and the connection of the background manifold. These aspects are: 1) the BF-like field theory structure of the Einstein–Hilbert action, of the cosmological term, and of the corresponding equations of motion; 2) the formulation of Maxwellian field theories using only the Riemannian connection and its corresponding curvature tensor, and the subsequent unification of gravity and gauge interactions in a four dimensional field theory; 3) the construction of four and three dimensional geometrical invariants in terms of the Riemann tensor and its traces, particularly the formulation of an anomalous Chern–Simons topological model where the action of diffeomorphisms is identified with the action of a gauge symmetry, close to Witten’s formulation of three-dimensional gravity as a Chern–Simon gauge theory. 4) Tordions as propagating and non-propagating fields are also formulated in this approach. This new formulation collapses to the usual one when the metric connection is invoked, and certain geometrical structures very known in the traditional literature can be identified as remanent structures in this collapse.

Keywords

Formulations of general relativity Unification BF-like field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schrödinger E.: Space–Time Structure. Cambridge University Press, Cambridge (1950)MATHGoogle Scholar
  2. 2.
    Einstein A.: The Meaning of Relativity. Methuen, London (1951)Google Scholar
  3. 3.
    Einstein, A.: Sitzungsber. Preuβ. Akad. Wiss. 414 (1925)Google Scholar
  4. 4.
    Einstein A.: The Meaning of Relativity, Including the Relativistic Theory of the Non-Symmetric Field, 5th edn. Princenton University Press, Princeton (1955)Google Scholar
  5. 5.
    Einstein A., Kaufman B.: Ann. Math. 62, 128 (1955)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Einstein A., Straus E.G.: Ann. Math. 47, 731 (1946)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Palatini A.: Rend. Circ. Mat. Palermo. 43, 203 (1917)CrossRefGoogle Scholar
  8. 8.
    Plebanski J.F.: J. Math. Phys. 18, 2511 (1977)CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Samuel J.: Pramana J. Phys. 28, L429 (1987)CrossRefADSGoogle Scholar
  10. 10.
    Jacobson T., Smolin L.: Class. Quantum Gravity 5, 583 (1988)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Capovilla R., Dell J., Jacobson T., Manson L.: Class. Quantum Gravity 8, 41 (1991)CrossRefMATHADSGoogle Scholar
  12. 12.
    Capovilla R., Dell J., Jacobson T.: Class. Quantum Gravity 8, 59 (1991)CrossRefADSMathSciNetMATHGoogle Scholar
  13. 13.
    Barbero J.F.: Phys. Rev. D 51, 5507 (1995)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Holst S.: Phys. Rev. D 53, 5966 (1996)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Capovilla R., Jacobson T., Dell J.: Phys. Rev. Lett. 63, 2325 (1989)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Ashtekar A.: Phys. Rev. Lett. 77, 3288 (1986)Google Scholar
  17. 17.
    Ashtekar A.: Phys. Rev. D 36, 1587 (1987)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Arnowitt, R., Deser, R., Misner, C.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)Google Scholar
  19. 19.
    Hayashi K., Shirafuji T.: Phys. Rev. D 19, 3524 (1979)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Hehl, F.W.: In: Bergmann, P.G., de Sabbata, V.: Cosmology and Gravitation. Plenum, New York (1980)Google Scholar
  21. 21.
    Kopczynski W.: J. Phys. A 15, 493 (1982)CrossRefMATHADSMathSciNetGoogle Scholar
  22. 22.
    de Azeredo-Campos R., Oliveira C.G.: Nuovo Cimento B 74, 83 (1983)CrossRefADSGoogle Scholar
  23. 23.
    Mielke E.W.: Ann. Phys. (N.Y.) 219, 78 (1992)CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    Hehl F.W., McCrea J.D., Mielke E.W., Ne’eman Y.: Phys. Rep. 258, 1 (1995)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  26. 26.
    Thiemann T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  27. 27.
    Smolin L.: Class. Quantum Gravity 9, 883 (1992)CrossRefMATHADSMathSciNetGoogle Scholar
  28. 28.
    Escalante A.: Int. J. Theor. Phys. 48(9), 2473–2729 (2009)CrossRefGoogle Scholar
  29. 29.
    Witten E.: Nucl. Phys. B 186, 412 (1981)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Volovich I.V., Katanaev M.O.: Theor. Math. Phys. 66, 53 (1983)CrossRefGoogle Scholar
  31. 31.
    Moffat J.W.: J. Math. Phys. 26, 528 (1985)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Neville D.E.: Phys. Rev. D 33, 363 (1986)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Fabbri, L.: gr-qc/0608090Google Scholar
  34. 34.
    Blau M., Thompson G.: Ann. Phys. 205, 130 (1991)CrossRefMATHADSMathSciNetGoogle Scholar
  35. 35.
    Maggiore N., Sorella S.P.: Int. J. Mod. Phys. A 8, 929 (1993)CrossRefMATHADSMathSciNetGoogle Scholar
  36. 36.
    Horowitz G.: Comm. Math. Phys. 125, 417 (1989)CrossRefMATHADSMathSciNetGoogle Scholar
  37. 37.
    Cartas-Fuentevilla R.: Phys. Rev. D 80, 085003 (2009)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Witten E.: Nucl. Phys. B 311, 46 (1988)CrossRefADSMathSciNetMATHGoogle Scholar
  39. 39.
    Borowiec A., Ferraris M., Francaviglia M.: J. Phys. A 31, 8823–8833 (1998)CrossRefMATHADSMathSciNetGoogle Scholar
  40. 40.
    Julia B., Silva S.: Class. Quant. Grav. 17, 4733–4744 (2000)CrossRefMATHADSMathSciNetGoogle Scholar
  41. 41.
    Ferraris M., Kijowski J.: Gen. Relativ. Gravit. 14, 37–46 (1982)CrossRefMATHADSMathSciNetGoogle Scholar
  42. 42.
    Ferraris M., Kijowski J.: Gen. Relativ. Gravit. 14, 165–180 (1982)CrossRefMATHADSMathSciNetGoogle Scholar
  43. 43.
    Borowiec A., Ferraris M., Francaviglia M.: Class. Quant. Grav. 15, 43–55 (1998)CrossRefMATHADSMathSciNetGoogle Scholar
  44. 44.
    Poplawski Nikodem J.: Found. Phys. 39, 307–330 (2009)CrossRefMATHADSMathSciNetGoogle Scholar
  45. 45.
    Poplawski Nikodem J.: Int. J. Theor. Phys. 49, 1481–1488 (2010)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Vitagliano, V., Sotiriou, T.P., Liberati, S.: arXiv:1007.3937Google Scholar
  47. 47.
    Witten E.: Comm. Math. Phys. 121, 351–399 (1989)CrossRefMATHADSMathSciNetGoogle Scholar
  48. 48.
    Sezgin E., van Nieuwenhuizen P.: Phys. Rev. D 21, 3269 (1980)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Neville D.E.: Phys. Rev. D 21, 867 (1980)CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Hayashi, K., Shirafuji, T.: Prog. Theor. Phys. 64, 866, 833, 1435, 2222 (1980)Google Scholar
  51. 51.
    Randono, A.: Generalizing the Kodama state. I. Construction, gr-qc/0611073Google Scholar
  52. 52.
    Ita E.E. III: Class. Quant. Grav. 25, 125002 (2008)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Escalante A.: Phys. Lett. B 676, 105–111 (2009)CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    Cartas Fuentevilla, R.: Killing flows for Ricci-flat connections on compact manifolds (2010) (in press)Google Scholar
  55. 55.
    Cartas Fuentevilla, R., Solano-Altamirano, J.M., Enriquez-Silverio, P.: Post-Riemannian approach for the symplectic and elliptic geometries of gravity. J. Phys. A: Math. Theor. (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. Cartas-Fuentevilla
    • 1
  • A. Escalante-Hernandez
    • 1
  • J. A. Lopez-Osio
    • 1
  • J. M. Solano-Altamirano
    • 1
  • J. F. Tlapanco-Limon
    • 1
  • J. Berra-Montiel
    • 2
  • P. Enriquez-Silverio
    • 2
  1. 1.Instituto de FísicaUniversidad Autónoma de PueblaPuebla PueMexico
  2. 2.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de PueblaPuebla PueMexico

Personalised recommendations