Skip to main content
Log in

Massive Nordström scalar (density) gravities from universal coupling

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Both particle physics and the 1890s Seeliger–Neumann modification of Newtonian gravity suggest considering a “mass term” for gravity, yielding a finite range due to an exponentially decaying Yukawa potential. Unlike Nordström’s “massless” theory, massive scalar gravities are strictly Special Relativistic, being invariant under the Poincaré group but not the conformal group. Geometry is a poor guide to understanding massive scalar gravities: matter sees a conformally flat metric, but gravity also sees the rest of the flat metric, barely, in the mass term. Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy’s trace as source. All are new except the Freund–Nambu theory. The smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities. The ease of accommodating electrons, protons and other fermions using density-weighted Ogievetsky–Polubarinov spinors in scalar gravity is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renn, J., Schemmel, M. (eds): The Genesis of General Relativity, Volume 3: Gravitation in the Twilight of Classical Physics: Between Mechanics, Field Theory, and Astronomy. Springer, Dordrecht (2007)

    Google Scholar 

  2. von Laue M.: Die Nordströmsche Gravitationstheorie. Journal der Radioaktivität und Electronik 14, 263 (1917)

    Google Scholar 

  3. Bergmann O.: Scalar field theory as a theory of gravitation. I. Am. J. Phys. 24, 38 (1956)

    Article  MATH  ADS  Google Scholar 

  4. Wigner E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  5. Pauli W., Fierz M.: Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld. Helv. Phys. Acta 12, 297 (1939)

    MATH  Google Scholar 

  6. Fierz M., Pauli W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  7. Wentzel, G.: Quantum Theory of Fields. Interscience Publishers, New York (1949). German original 1943, translated by Charlotte Houtermans and J.M. Jauch

  8. Tonnelat M.-A.: La particule de spin 2 et la loi de gravitation d’Einstein dans le cas de présence de matière. Comptes rendus hebdomadaires des séances de l’Académie des sciences 218, 305 (1944)

    MATH  MathSciNet  Google Scholar 

  9. Pockels, F.: Über die Partielle Differentialgleichung Δuk 2 u =  0 und deren Auftreten in der mathematischen Physik. B.G. Teubner, Leipzig (1891)

  10. Neumann, C.: Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen mit besonderer Rücksicht auf die Elektrischen Wirkungen. B.G. Teubner, Leipzig (1896)

  11. von Seeliger H.: Ueber das Newton’sche Gravitationgesetz. Sitzungsberichte der mathematisch-physikalischen Classe der k. b. Akademie der Wissenschaften zu München 26, 373 (1896)

    Google Scholar 

  12. Pauli, W.: Theory of Relativity. Pergamon, New York, 1921. English translation 1958 by G. Field; republished by Dover, New York (1981)

  13. North, J.D.: The Measure of the Universe: A History of Modern Cosmology. Oxford University, 1990. Dover reprint (1965)

  14. Norton J.D.: The cosmological woes of Newtonian gravitation theory. In: Goenner, H., Renn, J., Ritter, J., Sauer, T. (eds) The Expanding Worlds of General Relativity, Einstein Studies, vol. 7, pp. 271. Birkhäuser, Boston (1999)

    Chapter  Google Scholar 

  15. Earman J.: Lambda: the constant that refuses to die. Arch. Hist. Exact Sci. 55, 189 (2001)

    Article  MathSciNet  Google Scholar 

  16. Einstein, A.: Cosmological considerations on the general theory of relativity. In: Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H., Sommerfeld, A., Perrett, W., Jeffery, G.B. (eds.) The Principle of Relativity. Methuen, London, 1923. Dover reprint, New York, 1952. Translated from “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Sitzungsberichte der Koenigliche Preussichen Akademie der Wissenschaften zu Berlin, pp. 142–152 (1917)

  17. DeWitt B.S.: Dynamical Theory of Groups and Fields. Gordon and Breach, New York (1965)

    MATH  Google Scholar 

  18. Trautman, A.: Foundations and current problems of General Relativity. In: Deser, S., Ford, K.W. (eds.) Lectures on General Relativity, pp. 1–248. Prentice Hall, Englewood Cliffs (1965). Brandeis Summer Institute in Theoretical Physics

  19. Treder H.-J.: On the question of a cosmological rest mass of gravitons. Int. J. Theor. Phys. 1, 167 (1968)

    Article  Google Scholar 

  20. Freund P.G.O., Maheshwari A., Schonberg E.: Finite-range gravitation. Astrophys. J. 157, 857 (1969)

    Article  ADS  Google Scholar 

  21. Schucking E.L.: The introduction of the cosmological constant. In: Zichini, A., de Sabbata, V., Sánchez, N. Gravitation and Modern Cosmology: The Cosmological Constant Problem, Plenum, New York (1991)

  22. Faraoni V., Cooperstock F.I.: When a mass term does not represent a mass. Eur. J. Phys. 19, 419 (1998)

    Article  MATH  Google Scholar 

  23. Harvey A., Schucking E.: Einstein’s mistake and the cosmological constant. Am. J. Phys. 68(8), 723 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Freund P.G.O., Nambu Y.: Scalar fields coupled to the trace of the energy-momentum tensor. Phys. Rev. 174, 1741 (1968)

    Article  ADS  Google Scholar 

  25. Deser S., Halpern L.: Self-coupled scalar gravitation. Gen. Relativ. Gravit. 1, 131 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  26. Dehnen H., Frommert H.: Scalar gravity and Higgs potential. Int. J. Theor. Phys. 29, 361 (1990)

    Article  MATH  Google Scholar 

  27. Weinberg S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  28. Pitts, J.B.: Permanent underdetermination from approximate empirical equivalence in field theory: massless and massive scalar gravity, neutrino, electromagnetic, Yang-Mills and gravitational theories. Br. J. Philos. Sci. 61 (2010, forthcoming)

  29. von Seeliger H.: Ueber das Newton’sche Gravitationgesetz. Astronomische Nachrichten 137, 129 (1895) NASA ADS

    Article  ADS  MATH  Google Scholar 

  30. Kraichnan, R.H.: Special-relativistic derivation of generally covariant gravitation theory. Phys. Rev. 98, 1118 (1955). Errata 99, 1906 (1955)

    Google Scholar 

  31. Einstein A., Fokker A.D.: Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls. Annalen der Physik 44, 321 (1914) English translation in Beck and Howard

    Article  ADS  MATH  Google Scholar 

  32. Beck, A., Howard, D.: The Collected Papers of Albert Einstein, Volume 4, The Swiss Years: Writings, 1912–1914. (English Translation.) The Hebrew University of Jerusalem and Princeton University, Princeton (1996)

  33. Wald R.M.: General Relativity. University of Chicago, Chicago (1984)

    MATH  Google Scholar 

  34. Brans, C.H.: Gravity and the tenacious scalar field. In: Harvey, A. (ed.) On Einstein’s Path: Essays in Honor of Engelbert Schucking, p. 121. Springer, New York (1997). gr-qc/9705069

  35. Watt, K., Misner, C.W.: Relativistic scalar gravity: a laboratory for numerical relativity. (1999) gr-qc/9910032

  36. Sundrum, R.: Gravity’s scalar cousin. (2004) hep-th/0312212v2

  37. Manrique E., Reuter M.: Bimetric truncations for quantum Einstein gravity and asymptotic safety. Ann. Phys. 325, 785 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Anderson J.L.: Principles of Relativity Physics. Academic, New York (1967)

    Google Scholar 

  39. Einstein, A., Grossmann, M.: Outline of a generalized theory of relativity and of a theory of gravitation. In: Beck, A., Howard, D. (eds.) The Collected Papers of Albert Einstein, Volume 4, The Swiss Years: Writings, 1912–1914, English Translation. The Hebrew University of Jerusalem and Princeton University, Princeton, 1996. Translated from Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation, Teubner, Leipzig (1913)

  40. Ogievetsky V.I., Polubarinov I.V.: Interacting field of spin 2 and the Einstein equations. Ann. Phys. 35, 167 (1965)

    Article  ADS  Google Scholar 

  41. Ogievetskii V.I., Polubarinov I.V.: Theory of a neutral massive tensor field with spin 2. Sov. Phys. Dokl. 11, 135 (1966)

    ADS  Google Scholar 

  42. Pitts J.B., Schieve W.C.: Universally coupled massive gravity. Theor. Math. Phys. 151, 700 (2007) gr-qc/0503051v3

    Article  MATH  MathSciNet  Google Scholar 

  43. Misner C., Thorne K., Wheeler J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  44. Norton, J.D.: Einstein, Nordström and the early demise of scalar, Lorentz covariant theories of gravitation. In: Renn, J., Schemmel, M. (eds.) The Genesis of General Relativity, Volume 3: Gravitation in the Twilight of Classical Physics: Between Mechanics, Field Theory, and Astronomy, pp. 413–487. Springer, Dordrecht (2007). http://www.pitt.edu/~jdnorton/papers/Nordstroem.pdf

  45. Gołab, S.: Tensor Calculus. Elsevier, Amsterdam (1974). Trans.: Eugene Lepa

  46. Rosenfeld, L.: Sur le tenseur d’impulsion-énergie. Mémoires de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, Classe des Sciences, 18(6), 1 (1940). English translation in Selected Papers of Léon Rosenfeld, p. 711, edited by Robert S. Cohen and John J. Stachel. D. Reidel, Dordrecht (1977)

  47. Deser S.: Self-interaction and gauge invariance. Gen. Relativ. Gravit. 1, 9 (1970) gr-qc/0411023v2

    Article  MathSciNet  ADS  Google Scholar 

  48. Gotay, M.J., Marsden, J.E.: Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula. In: Gotay, M.J., Marsden, J.E., Moncrief, V. (eds.) Mathematical Aspects of Classical Field Theory (Seattle, 1991). Contemporary Mathematics, vol. 132, p. 367. American Mathematical Society, Providence (1992). http://www.math.hawaii.edu/~gotay/SEMTensors.pdf

  49. Pitts J.B., Schieve W.C.: Slightly bimetric gravitation. Gen. Relativ. Gravit. 33, 1319 (2001) gr-qc/0101058v3

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Pitts J.B.: Absolute objects and counterexamples: Jones-Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density. Stud. Hist. Philos. Mod. Phys. 37, 347 (2006) gr-qc/0506102v4

    Article  MathSciNet  MATH  Google Scholar 

  51. Schouten J.A.: Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, 2nd edn. Springer, Berlin (1954)

    MATH  Google Scholar 

  52. Israel W.: Differential Forms in General Relativity, 2nd edn. Dublin Institute for Advanced Studies, Dublin (1979)

    MATH  Google Scholar 

  53. Szybiak A.: On the Lie derivative of geometric objects from the point of view of functional equations. Prace Matematyczne=Schedae Mathematicae 11, 85 (1966)

    MathSciNet  Google Scholar 

  54. Szybiak A.: Covariant derivative of geometric objects of the first class. Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 11, 687 (1963)

    MATH  MathSciNet  Google Scholar 

  55. Choquet-Bruhat Y., DeWitt-Morette C.: Analysis, Manifolds, and Physics. Part II: 92 Applications. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  56. Ogievetskiĭ V.I., Polubarinov I.V.: Spinors in gravitation theory. Sov. Phys. JETP 21, 1093 (1965)

    ADS  Google Scholar 

  57. Gates, S.J. Jr., Grisaru, M.T., Roček, M., Siegel, W.: Superspace, or One Thousand and One Lessons in Supersymmetry. Benjamin/Cummings, Reading (1983)

  58. Bilyalov R.F.: Spinors on Riemannian manifolds. Russ. Math. (Iz. VUZ) 46(11), 6 (2002)

    MathSciNet  Google Scholar 

  59. Branson, T.: Conformal structure and spin geometry. In: Bourguignon, J.-P., Branson, T., Chamseddine, A., Hijazi, O., Stanton, R.J. (eds.) Dirac Operators: Yesterday and Today: Proceedings of the Summer School and Workshop, CAMS-AUB, Lebanon, August 27–September 7, 2001. International Press, Somerville (2005)

  60. Pitts, J.B.: General covariance, artificial gauge freedom and empirical equivalence. PhD thesis, Department of Philosophy, University of Notre Dame (2008). Supervised by Don Howard

  61. Callan C.G. Jr., Coleman S., Jackiw R.: A new improved energy-momentum tensor. Ann. Phys. 59, 42 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Sorkin R.: On stress-energy tensors. Gen. Relativ. Gravit. 8, 437 (1977)

    Article  MATH  ADS  Google Scholar 

  63. Dehnen H., Frommert H., Ghaboussi F.: Higgs-field gavity. Int. J. Theor. Phys. 29, 537 (1990)

    Article  MATH  Google Scholar 

  64. Einstein, A.: Geometry and experience. In: Sidelights on Relativity. E. P. Dutton, New York (1922). Reprint Dover, New York (1983)

  65. Jeffrey A.: Handbook of Mathematical Formulas and Integrals. Academic, San Diego (1995)

    Google Scholar 

  66. Shenk A.: Calculus and Analytic Geometry, 4th edn. Scott, Foresman and Company, Glenview (1988)

    Google Scholar 

  67. Veneziano G.: Trilinear coupling of scalar bosons in the small mass limit. Nucl. Phys. B 44, 142 (1972)

    Article  ADS  Google Scholar 

  68. Mack G.: Partially conserved dilatation current. Nucl. Phys. B 5, 499 (1968)

    Article  ADS  Google Scholar 

  69. Chang L.N., Freund P.G.O.: Dilatation-like currents and scalar mesons. Ann. Phys. 61, 182 (1970)

    Article  ADS  Google Scholar 

  70. Aurilia A.: Broken conformal invariance. Phys. Rev. D 14, 955 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  71. Dehnen H., Frommert H.: Higgs-field gavity within the standard model. Int. J. Theor. Phys. 30, 985 (1991)

    Article  Google Scholar 

  72. Forger M., Römer H.: Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem. Ann. Phys. 309, 306 (2004)

    Article  MATH  ADS  Google Scholar 

  73. Pons, J.M.: Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory. (2009). arxiv:0902.4871

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brian Pitts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitts, J.B. Massive Nordström scalar (density) gravities from universal coupling. Gen Relativ Gravit 43, 871–895 (2011). https://doi.org/10.1007/s10714-010-1100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1100-7

Keywords

Navigation