Advertisement

General Relativity and Gravitation

, Volume 43, Issue 4, pp 1083–1093 | Cite as

Limits on decaying dark energy density models from the CMB temperature–redshift relation

  • Philippe Jetzer
  • Denis Puy
  • Monique Signore
  • Crescenzo Tortora
Research Article

Abstract

The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (Phys Rev D 54:2571, 1996). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the cosmic microwave background (CMB) which depends on the effective equation of state w eff and on the “adiabatic index” γ. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev–Zel’dovich observations and at higher redshift from quasar absorption line spectra, we find w eff = −0.97 ± 0.03, adopting for the adiabatic index γ = 4/3, in good agreement with current estimates and still compatible with w eff = −1, implying that the dark energy content being constant in time.

Keywords

Dark energy Sunyaev-Zel’dovich effect Thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lima J.A.S.: Phys. Rev. D. 54, 2571 (1996)CrossRefADSGoogle Scholar
  2. 2.
    Perlmutter S. et al.: Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Reiss A.G. et al.: Astron. J. 116, 1009 (1998)CrossRefADSGoogle Scholar
  4. 4.
    de Bernardis P. et al.: Nature 404, 955 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Spergel D.N. et al.: Astrophys. J. Suppl. 170, 377 (2007)CrossRefADSGoogle Scholar
  6. 6.
    Caldwell R., Kamionkowski M.: Ann. Rev. Nucl. Part. Sci. 59, 397 (2009)CrossRefADSGoogle Scholar
  7. 7.
    Peebles P.J.E., Rathra B.: Rev. Mod. Phys. 75, 559 (2003)CrossRefMATHADSGoogle Scholar
  8. 8.
    Padmanabhan T.: Phys. Rep. 380, 235 (2003)CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Demianski M., Piedipalumbo E., Rubano C., Tortora C.: Astron. Astrophys. 431, 27D (2005)CrossRefADSGoogle Scholar
  10. 10.
    Cardone V.F., Tortora C., Troisi A., Capozziello S.: Phys. Rev. D 73, 043508 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Caldwell R.R.: Phys. Lett. B 545, 23 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Peebles P.J.E., Ratra B.: Astrophys. J. Lett. 325, L17 (1988)CrossRefADSGoogle Scholar
  13. 13.
    Ratra B., Peebles P.J.E.: Phys. Rev. D 37, 3406 (1988)CrossRefADSGoogle Scholar
  14. 14.
    Sahni V., Starobinsky A.A.: Int. J. Mod. Phys. D 9, 373 (2000)ADSGoogle Scholar
  15. 15.
    Ma Y.: Nucl. Phys. B 804, 262 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Lima J.A.S., Silva A.I., Viegas S.M.: Mon. Not. R. Astron. Soc. 312, 747 (2000)CrossRefADSGoogle Scholar
  17. 17.
    Lima J.A.S., Alcaniz J.S.: Astron. Astrophys. 348, 1 (1999)ADSGoogle Scholar
  18. 18.
    Puy D.: Astron. Astrophys. 422, 1 (2004)CrossRefMATHADSGoogle Scholar
  19. 19.
    Ge J., Bechtold J., Black J.: Astrophys. J. 474, 67 (1997)CrossRefADSGoogle Scholar
  20. 20.
    Srianand R., Petijean P., Ledoux C.: Nature 408, 931 (2000)CrossRefADSGoogle Scholar
  21. 21.
    Molaro P., Levshakov S., Dessauges-Zavadsky M., D’Odorico S.: Astron. Astrophys. 381, L64 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Puy D., Alecian G., Leorat J., Lebourlot J., Pineaudes Forets G.: Astron. Astrophys. 267, 337 (1993)ADSGoogle Scholar
  23. 23.
    Galli D., Palla F.: Astron. Astrophys. 335, 403 (1998)ADSGoogle Scholar
  24. 24.
    Stancil P., Lepp S., Dalgarno A.: Astrophys. J. 509, 1 (1998)CrossRefADSGoogle Scholar
  25. 25.
    Cui J., Bechtold J., Ge J., Meyer D.: Astrophys. J. 633, 649 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Srianand R., Noterdaeme P., Ledoux C., Petijean P.: Astron. Astrophys. 482, L39 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Sunyaev R., Zel’dovich Y.: Comments. Astrophys. Space. Phys. 4, 173 (1972)ADSGoogle Scholar
  28. 28.
    Fabbri R., Melchiorri F., Natale V.: Astrophys. Space. Sci. 59, 223 (1978)CrossRefADSGoogle Scholar
  29. 29.
    Luzzi G., Shimon M., Lamagna L., Rephaeli Y., De Petris M., Conte A., De Gregori S., Battistelli E.: Astrophys. J. 705, 1122 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Mather J.C. et al.: Astrophys. J. 512, 511 (1999)CrossRefADSGoogle Scholar
  31. 31.
    Komatsu E. et al.: Astrophys. J. Suppl. 180, 330 (2009)CrossRefADSGoogle Scholar
  32. 32.
    Daly R.A. et al.: Astrophys. J. 677, 1 (2008)CrossRefADSGoogle Scholar
  33. 33.
    Kowalski M. et al.: Astrophys. J. 686, 749 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Kessler R. et al.: Astrophys. J. Supp. 185, 32 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Philippe Jetzer
    • 1
    • 2
  • Denis Puy
    • 2
  • Monique Signore
    • 3
  • Crescenzo Tortora
    • 1
  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Groupe de Recherche d’Astronomie et d’Astrophysique du LanguedocUniversité des Sciences Montpellier IIMontpellier cedex 09France
  3. 3.Observatoire de ParisLERMAParisFrance

Personalised recommendations