Skip to main content

Advertisement

Log in

Limits on decaying dark energy density models from the CMB temperature–redshift relation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (Phys Rev D 54:2571, 1996). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the cosmic microwave background (CMB) which depends on the effective equation of state w eff and on the “adiabatic index” γ. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev–Zel’dovich observations and at higher redshift from quasar absorption line spectra, we find w eff = −0.97 ± 0.03, adopting for the adiabatic index γ = 4/3, in good agreement with current estimates and still compatible with w eff = −1, implying that the dark energy content being constant in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lima J.A.S.: Phys. Rev. D. 54, 2571 (1996)

    Article  ADS  Google Scholar 

  2. Perlmutter S. et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Reiss A.G. et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. de Bernardis P. et al.: Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  5. Spergel D.N. et al.: Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  6. Caldwell R., Kamionkowski M.: Ann. Rev. Nucl. Part. Sci. 59, 397 (2009)

    Article  ADS  Google Scholar 

  7. Peebles P.J.E., Rathra B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MATH  ADS  Google Scholar 

  8. Padmanabhan T.: Phys. Rep. 380, 235 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Demianski M., Piedipalumbo E., Rubano C., Tortora C.: Astron. Astrophys. 431, 27D (2005)

    Article  ADS  Google Scholar 

  10. Cardone V.F., Tortora C., Troisi A., Capozziello S.: Phys. Rev. D 73, 043508 (2006)

    Article  ADS  Google Scholar 

  11. Caldwell R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  12. Peebles P.J.E., Ratra B.: Astrophys. J. Lett. 325, L17 (1988)

    Article  ADS  Google Scholar 

  13. Ratra B., Peebles P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  14. Sahni V., Starobinsky A.A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  15. Ma Y.: Nucl. Phys. B 804, 262 (2008)

    Article  ADS  Google Scholar 

  16. Lima J.A.S., Silva A.I., Viegas S.M.: Mon. Not. R. Astron. Soc. 312, 747 (2000)

    Article  ADS  Google Scholar 

  17. Lima J.A.S., Alcaniz J.S.: Astron. Astrophys. 348, 1 (1999)

    ADS  Google Scholar 

  18. Puy D.: Astron. Astrophys. 422, 1 (2004)

    Article  MATH  ADS  Google Scholar 

  19. Ge J., Bechtold J., Black J.: Astrophys. J. 474, 67 (1997)

    Article  ADS  Google Scholar 

  20. Srianand R., Petijean P., Ledoux C.: Nature 408, 931 (2000)

    Article  ADS  Google Scholar 

  21. Molaro P., Levshakov S., Dessauges-Zavadsky M., D’Odorico S.: Astron. Astrophys. 381, L64 (2002)

    Article  ADS  Google Scholar 

  22. Puy D., Alecian G., Leorat J., Lebourlot J., Pineaudes Forets G.: Astron. Astrophys. 267, 337 (1993)

    ADS  Google Scholar 

  23. Galli D., Palla F.: Astron. Astrophys. 335, 403 (1998)

    ADS  Google Scholar 

  24. Stancil P., Lepp S., Dalgarno A.: Astrophys. J. 509, 1 (1998)

    Article  ADS  Google Scholar 

  25. Cui J., Bechtold J., Ge J., Meyer D.: Astrophys. J. 633, 649 (2005)

    Article  ADS  Google Scholar 

  26. Srianand R., Noterdaeme P., Ledoux C., Petijean P.: Astron. Astrophys. 482, L39 (2008)

    Article  ADS  Google Scholar 

  27. Sunyaev R., Zel’dovich Y.: Comments. Astrophys. Space. Phys. 4, 173 (1972)

    ADS  Google Scholar 

  28. Fabbri R., Melchiorri F., Natale V.: Astrophys. Space. Sci. 59, 223 (1978)

    Article  ADS  Google Scholar 

  29. Luzzi G., Shimon M., Lamagna L., Rephaeli Y., De Petris M., Conte A., De Gregori S., Battistelli E.: Astrophys. J. 705, 1122 (2009)

    Article  ADS  Google Scholar 

  30. Mather J.C. et al.: Astrophys. J. 512, 511 (1999)

    Article  ADS  Google Scholar 

  31. Komatsu E. et al.: Astrophys. J. Suppl. 180, 330 (2009)

    Article  ADS  Google Scholar 

  32. Daly R.A. et al.: Astrophys. J. 677, 1 (2008)

    Article  ADS  Google Scholar 

  33. Kowalski M. et al.: Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  34. Kessler R. et al.: Astrophys. J. Supp. 185, 32 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jetzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jetzer, P., Puy, D., Signore, M. et al. Limits on decaying dark energy density models from the CMB temperature–redshift relation. Gen Relativ Gravit 43, 1083–1093 (2011). https://doi.org/10.1007/s10714-010-1091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1091-4

Keywords

Navigation