General Relativity and Gravitation

, Volume 43, Issue 1, pp 155–161 | Cite as

A spinning shell around a Kerr black hole in a slow rotation approximation

  • R. Siegl
Research Article


This paper explores a thin shell of ideal fluid surrounding a Kerr black hole assuming a slow rotation and retaining only first order terms of expansion in angular momentum. It is shown that a physically feasible shell rotates rigidly in this approximation and that the interior black hole mass is constrained by other parameters of the system. Furthermore, it is shown that the local inertial frames are “dragged” by the shell as the shell radius approaches the gravitational radius, which is similar to results of studies considering a flat interior.


Kerr metric Thin shell Rotating black hole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr R.P.: Phys. Rev. Lett. 11, 237–238 (1963)MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Carter B.: Phys. Rev. 174, 1559–1571 (1968)MATHCrossRefADSGoogle Scholar
  3. 3.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)MATHCrossRefGoogle Scholar
  4. 4.
    Neugebauer G., Meinel R.: Phys. Rev. Lett. 73, 2166–2168 (1994)CrossRefADSGoogle Scholar
  5. 5.
    Neugebauer G., Meinel R.: Phys. Rev. Lett. 75, 3046–3047 (1995)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Bicak J., Ledvinka T.: Phys. Rev. Lett. 71, 1669–1672 (1993)MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    De La Cruz V., Israel W.: Phys. Rev. 170, 1187–1192 (1968)CrossRefADSGoogle Scholar
  8. 8.
    Cohen J.M.: J. Math. Phys. 8, 1477–1478 (1967)CrossRefADSGoogle Scholar
  9. 9.
    Orwig L.P.: Phys. Rev. D. 18, 1757–1763 (1978)CrossRefADSGoogle Scholar
  10. 10.
    Pfister H., Braun K.H.: Class. Quantum Grav. 3, 335–345 (1986)MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Babala D.: Gen. Relativ. Gravit. 18, 173–191 (1986)MATHMathSciNetADSGoogle Scholar
  12. 12.
    Frauendiener J., Hoenselaers C., Konrad W.: Class. Quantum Grav. 7, 585–587 (1990)CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Israel, W.: Nuovo Cim. 44B, 1–14 (1966); Errata: (1967) Nuovo Cim. 48B, 463Google Scholar
  14. 14.
    Horsky J.: Czech. J. Phys. B18, 569–583 (1968)CrossRefADSGoogle Scholar
  15. 15.
    Novotny J., Horsky J.: Czech. J. Phys. B24, 718–724 (1974)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Wallstreet SystemsPragueCzech Republic

Personalised recommendations